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Fas Preassociation Required for
Apoptosis Signaling and
Dominant Inhibition by
Pathogenic Mutations
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Heterozygous mutations encoding abnormal forms of the death receptor Fas
dominantly interfere with Fas-induced lymphocyte apoptosis in human auto-
immune lymphoproliferative syndrome. This effect, rather than depending on
ligand-induced receptor oligomerization, was found to stem from ligand-
independent interaction of wild-type and mutant Fas receptors through a
specific region in the extracellular domain. Preassociated Fas complexes were
found in living cells by means of fluorescence resonance energy transfer be-
tween variants of green fluorescent protein. These results show that formation
of preassociated receptor complexes is necessary for Fas signaling and dom-
inant interference in human disease.

Fas (CD95 or APO-1) is a cell surface recep-
tor that transduces apoptotic signals critical
for immune homeostasis and tolerance (1–3).
The Fas protein is a 317–amino acid type 1
transmembrane glycoprotein with three extra-
cellular cysteine-rich domains (CRDs) that
are characteristic of the tumor necrosis factor
receptor (TNFR) superfamily. Both Fas and
Fas ligand (FasL) are predicted to form trim-
ers, with CRD2 and CRD3 forming the major

contact surfaces for FasL (4, 5). The Fas
cytoplasmic portion contains a death do-
main that rapidly recruits the adaptor mol-
ecule FADD (Fas-associated death domain
protein) and the caspase-8 proenzyme after
binding of FasL or agonistic antibodies,
leading to caspase activation and apoptosis
(6 –10).

Patients with autoimmune lymphoprolif-
erative syndrome (ALPS) type 1A have het-
erozygous germ line mutations in the APT-1
Fas gene. Their lymphocytes are resistant to
Fas-induced apoptosis, and transfection of
the mutant allele causes dominant interfer-
ence with apoptosis induced through Fas (11–
16). This was thought to result from ligand-
mediated crosslinking of wild-type and de-
fective Fas chains into mixed trimer com-
plexes. However, a mutation that causes an

extracellular domain deletion of most of
CRD2 (ALPS Pt 2, deletion of amino acids
52 to 96) as a result of altered RNA splicing
shows no binding to agonistic antibodies or
FasL, but still dominantly interferes with Fas-
induced apoptosis almost as efficiently as
does a death domain mutant [ALPS Pt 6,
Ala241 3 Asp (A241D)] (Fig. 1A) (13, 17).
Control experiments showed equal cell sur-
face expression of the wild-type and mutant
Fas molecules (18). Thus, dominant interfer-
ence cannot be explained by the conventional
model of signaling by FasL-induced oli-
gomerization of receptor monomers because,
in this scheme, the Pt 2 mutant Fas molecule
would not become part of a mixed receptor
complex. We therefore tested for ligand-in-
dependent interactions between Pt 2 Fas and
wild-type Fas. Both full-length and Pt 2 Fas
coprecipitated with a Fas 1–210:GFP chimera
in which green fluorescent protein (GFP) re-
places the death domain (Fig. 1C). This in-
teraction was specific, because the TNFR
family receptors TNFR2/p80 and HveA did
not interact with Fas (1).

We have found that TNFR superfamily
members share a self-association domain in
CRD1, termed the “pre-ligand assembly
domain” (PLAD) (Fig. 1B) (19). To test
whether Fas contains a functional PLAD,
we constructed hemagglutinin (HA)-tagged
NH2-terminal Fas truncations (20). Delet-
ing the first subdomain in CRD1 (amino
acids 1 to 42) (21) substantially reduced
ligand binding but did not prevent binding
of the Fas monoclonal antibody (mAb)
APO-1. Deleting the entire CRD1 (amino
acids 1 to 66) abrogated binding of both
FasL and Fas mAb (Fig. 1A). Both trunca-
tions eliminated coprecipitation with a dif-
ferentially tagged Fas molecule and abro-
gated apoptosis signaling; this result indi-
cates that the NH2-terminus of Fas, includ-
ing CRD1, functions as a PLAD (Fig. 1, C
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and D) (19, 22). Fas mutants from ALPS
patients with truncated or mutated death
domains are potent dominant-negative in-
hibitors of normal Fas function. How-
ever, if the PLAD was removed from Fas
molecules lacking the death domain (Fas
1–210) or harboring an ALPS death domain
point mutation [ALPS Pt 26, Asp2443 Val
(D244V)], dominant interference was lost
(Fig. 1D).

To further explore the requirement for
ligand binding in receptor self-association,
we tested the Fas point mutation Arg863 Ser
(R86S) that removes a critical CRD2 contact
residue for FasL (5) and prevents FasL bind-
ing (Fig. 1A). The overall receptor structure
was preserved, as indicated by staining with
APO-1 and DX2 Fas mAbs (Fig. 1A) (18),
and self-association with wild-type Fas still
occurred (Fig. 1C). Even though it could not
bind FasL, this mutant dominantly interfered
with FasL-induced apoptosis through wild-
type Fas (Fig. 1E). Apoptosis induced by Fas
mAb in the same cells was unimpaired,
which indicated that Fas was functionally
expressed on the cell surface (Fig. 1E). Thus,
receptor self-association is independent of

ligand binding, yet critical for both normal
function and dominant interference.

To quantitate Fas receptor self-association
in living cells, we developed flow cytometric
and microscopic assays based on fluorescence
resonance energy transfer (FRET) between
spectral variants of GFP. [See protocol at Sci-
ence’s STKE (www.stke.org/cgi/content/full/
OC_sigtrans;2000/38/pl1)]. When in close
proximity (,100 Å), cyan fluorescent protein
(CFP) and yellow fluorescent protein (YFP)
will exhibit FRET (23). Flow cytometry us-
ing CFP excitation of cells expressing both
CFP and YFP Fas fusion proteins triggered
strong fluorescence emission at the YFP
wavelength attributable to FRET (Fig. 2A)
(24). FRET was detected between Fas fusion
proteins with or without the death domain,
but not between Fas and other TNFR family
members, such as TNFR1/p60, HveA, or
DR4 (Fig. 2) (1, 18). Microscopic measure-
ment of CFP dequenching after selectively
photobleaching YFP yielded a FRET effi-
ciency of 11%. With the death domain on
both molecules, FRET efficiency rose to
23%, consistent with increased oligomeriza-
tion via the death domain (25). Pt 2 Fas gave

a FRET efficiency comparable to that of Fas
1–210, but there was reduced signal with Fas
43–210 and no detectable FRET with Fas
67–210 or the DR4 control (Fig. 2B). Hence,
Fas molecules are in close proximity on the
surface of living cells, and this proximity
depends on the PLAD.

To test whether native Fas receptors nor-
mally self-associate, we performed chemical
crosslinking studies on H9 T lymphoma cells
expressing endogenous human Fas (Fig. 3).
Crosslinking shifted the apparent molecular
size of Fas in deglycosylated cell lysates from
45 to 140 kD under nonreducing conditions
(Fig. 3A). Densitometry suggested that 60%
of the Fas chains were crosslinked. Unlike
FasL- or Fas mAb–treated cells, Fas com-
plexes from surface-crosslinked cells showed
only partial recruitment of FADD and no
recruitment of caspase-8, with no cleavage
of the downstream caspase substrate poly-
(ADP-ribose)polymerase (PARP). Interest-
ingly, crosslinking prevented the formation
of active signaling complexes in response
to subsequent treatment with agonistic
mAb (Fig. 3B).

Our findings redefine how death signals

Fig. 1. (A) Surface ex-
pression and binding
characteristics of the in-
dicated wild-type and
mutant Fas molecules
transfected into 293T
HEK cells. The bold line
shows specific staining
and the thin line indi-
cates background stain-
ing of mock-transfected
cells. AU-1 or HA stain-
ing was performed to
confirm surface expres-
sion of each protein.
Staining of functional
receptors with FasL was
performed with a prep-
aration of FasL trimer-
ized via a modified
leucine zipper (FasL-LZ )
and LZ mAb. Numbers
indicate the percentage
of positively staining
cells in the indicated
gates. Cell loss of trans-
fected murine BW cells
was calculated as de-
scribed (13, 22). (B)
Schematic of the Fas
protein. Numbering is
based on (21). TM,
transmembrane do-
main. (C) Self-associa-
tion of Fas molecules.
293T cells cotrans-

fected with the indicated constructs were lysed and immunoprecipitated, and Western blots (WB) were probed as
described (29). The open circle indicates the immunoglobulin heavy chain in the immunoprecipitates (IP). (D) Dominant
interference depends on the PLAD. Jurkat cells were transfected with the indicated Fas expression vectors. Percentages
represent apoptotic GFP1 cells staining positive for Annexin-V PE (Pharmingen) due to surface exposure of phospha-
tidylserine after treatment with Fas mAb (15). Results are representative of three independent transfections. (E)

Induction and inhibition of apoptosis by the non–ligand-binding R86S Fas mutant. Murine BW cells were transfected with the indicated expression vectors, and
apoptosis was induced with Fas mAb (solid bars) and FasL (hatched bars) as described (13, 22).
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are triggered through Fas and how muta-
tions in ALPS dominantly interfere with
normal Fas function. In a large number of
ALPS patients evaluated at the National
Institutes of Health (13–15, 17), we found
that the PLAD was preserved in every ex-
ample of a dominant-interfering mutation
associated with disease, including muta-
tions that create premature termination
polypeptides encoding only the first 57 and
62 amino acids of the mature Fas protein.
To cause dominant interference, mutant
proteins must physically interact with wild-
type proteins in a functional complex (26 ).
Previously, dominant-negative receptor
mutations associated with human diseases
have been shown to interfere with normal
receptor signaling by sequestering ligand,

blocking intracellular signaling, or prevent-
ing transport of the wild-type chain to the
cell surface (27 ). For Fas, dominant inter-
ference stems instead from PLAD-mediat-
ed association between wild-type and mu-
tant receptors before ligand binding. PLAD
interactions are essential for ligand binding
and signaling and have been observed in
the regulation of apoptosis by soluble alter-
natively spliced forms of Fas that all in-
clude this domain (28). PLAD-mediated
dominant interference may also play a role
in modulation of signaling by decoy recep-
tors (2) and in the pathogenesis of diseases
due to heterozygous genetic abnormalities
in other members of the TNFR superfamily.
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Cross Talk Between Interferon-g
and -a/b Signaling Components
in Caveolar Membrane Domains
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Definition of cellular responses to cytokines often involves cross-communica-
tion through their respective receptors. Here, signaling by interferon-g (IFN-g)
is shown to depend on the IFN-a/b receptor components. Although these IFNs
transmit signals through distinct receptor complexes, the IFN-a/b receptor
component, IFNAR1, facilitates efficient assembly of IFN-g–activated tran-
scription factors. This cross talk is contingent on a constitutive subthreshold
IFN-a/b signaling and the association between the two nonligand-binding
receptor components, IFNAR1 and IFNGR2, in the caveolar membrane domains.
This aspect of signaling cross talk by IFNs may apply to other cytokines.

The cytokines IFN-a/b and IFN-g play cen-
tral roles in the innate immune response
against viral infections (1–4). IFN-g is also
widely involved in the regulation of adaptive
immune responses (5). These cytokines trans-
mit signals to the cell interior through distinct
receptor complexes, the IFN-a/b receptor
(IFNAR) and the IFN-g receptor (IFNGR),
each composed of two type II membrane
glycoproteins: IFNAR1 and IFNAR2, and
IFNGR1 and IFNGR2 (2–4, 6–8). Ligand-
induced stimulation of each IFN receptor
complex results in the activation of the recep-
tor-associated Janus protein tyrosine kinases
(Jak PTKs), specifically, Jak1 and Tyk2
PTKs for IFNAR and Jak1 and Jak2 PTKs for

IFNGR (6–10). After activation of these Jak
PTKs, the signal transducers and activators of
transcription 1 (Stat1) and Stat2 are tyrosine-
phosphorylated, leading to formation of the
two transcriptional activators, IFN-g–activat-
ed factor (GAF)/IFN-a–activated factor
(AAF) and IFN-stimulated gene factor 3
(ISGF3)/Stat1-p48 (9, 11). Although IFN-
a/b and IFN-g elicit cellular antiviral activi-
ties, it is unknown whether IFNAR and
IFNGR share any functional aspects in the
signaling processes. Receptors for these IFNs
and other cytokines are expressed at low
levels, ranging from 102 to 103 molecules on
the cell surface (2), but can efficiently trans-
mit signals to the cell interior. This raises the
possibility that these receptors are clustered,
even before ligand stimulation, to a particular
region of the cell membrane.

Mouse embryonic fibroblasts (MEFs), iso-
lated from either IFNAR1-deficient or
IFNGR1-deficient mice (12, 13), were exam-
ined for their antiviral response induced by
IFN-g or IFN-a (14). In MEFs lacking

IFNAR1 (IFNAR1-null MEFs) (15), the IFN-
g–induced antiviral response was impaired; a
concentration of IFN-g that was 10 times high-
er than that for wild-type (WT) MEFs was
required to achieve 50% protection of the cells
from encephalomyocarditis virus (EMCV) in-
fection, and full IFN-g response was not
achieved at even higher ligand concentrations
(Fig. 1A). In contrast, the IFN-a–induced anti-
viral response was normal in MEFs deficient in
IFN-g receptor (IFNGR1-null MEFs). The
IFN-g–induced DNA-binding activity of Stat1
was six to seven times lower in IFNAR1-null
MEFs than in WT MEFs (Fig. 1B) (12), al-
though the kinetics of the Stat1 activation was
the same (16). Similar results were obtained in
splenocytes of these mutant mice (16), indicat-
ing that the observed defect in Stat1 activation
is not restricted to MEFs. In contrast, Stat1
activation by IFN-a was normal in IFNGR1-
null MEFs (16), consistent with the antiviral
assay result. Like IFN-a/b stimulation, IFN-g
stimulation activates ISGF3 in MEFs (17),
which is critical for the IFN-g–induced antiviral
response (17, 18). In IFNAR1-null MEFs, how-
ever, IFN-g–induced formation of the ISGF3
complex was not detected (Fig. 1B).

To determine the role of IFNAR1 in
IFN-g signaling, we expressed mutant forms
of IFNAR1 (Fig. 1C) in the IFNAR1-null
MEFs. Expression of WT IFNAR1 restored
the IFN-g–induced activation of Stat1 and
ISGF3 (Fig. 1C, lower panel), as well as
antiviral responses (Fig. 1D). However, ex-
pression of either a mutant IFNAR1 lacking
the cytoplasmic region or a chimeric receptor
composed of the IFNAR1 transmembrane
and cytoplasmic region failed to restore the
response to IFN-g (Fig. 1, C and D).

These results raised the question of
whether an intact IFNAR1 or an IFN-a/b
signaling event, mediated by IFNAR1, is
required to produce a complete IFN-g
response. Because low levels of IFN-a/b
mRNA expression were detected by reverse
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