β-Lactamase as a Marker for Gene Expression in Live Zebrafish Embryos

Erez Raz,*,1 Gregor Zlokarnik,† Roger Y. Tsien,‡ and Wolfgang Driever*

*Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany; †Aurora Biosciences, 11010 Torreyana Road, San Diego, California 92121; and ‡Howard Hughes Medical Institute and Department of Pharmacology, University of California at San Diego, La Jolla, California 92093

In this report we describe the development of a sensitive assay for gene expression in zebrafish embryos using β-lactamase as a reporter gene. We show that injection of a green fluorescent substrate for β-lactamase allows the detection of reporter gene expression in live embryos. The β-lactamase enzyme catalyzes the hydrolysis of the substrate, thereby disrupting fluorescence resonance energy transfer from the donor to the acceptor dye in the molecule. As a result, a blue fluorescent product is produced and retained specifically in cells within which the enzyme is expressed. β-Lactamase is therefore suitable for monitoring spatially restricted patterns of gene expression in the early embryo. We suggest that this new reporter system provides a major advancement in sensitivity over the existing methods for monitoring gene expression in vivo during early embryogenesis. © 1998 Academic Press

Key Words: zebrafish; β-lactamase; dominant marker.

INTRODUCTION

Monitoring spatially restricted patterns of gene expression in live embryos became widespread when the green fluorescent protein (GFP) was introduced as a reporter gene (Chalfie et al., 1994). GFP can be used for monitoring intracellular protein trafficking, as a dominant marker for transgenesis and cell sorting and, importantly, it can allow the visualization of gene expression patterns in live embryos (Amsterdam et al., 1995; Long et al., 1995; Rizzuto et al., 1995; Takada et al., 1997; Wang et al., 1998; reviewed in Prasher, 1995).

While GFP provides an excellent noninvasive method for monitoring gene expression, the production of signal by this protein is noncatalytic. For this reason, the number of molecules required to overcome the autofluorescence background is relatively high. It was estimated that 10^5–10^6 GFP molecules per cell are required to visualize the protein when it is evenly distributed in the cytosol (Niswender et al., 1995). This low level of sensitivity can result in a time delay between onset of gene expression and the ability to detect accumulated green fluorescent protein (Davis et al., 1995), especially when weak and tightly regulated promoters are used.

Using the FDG substrate for β-galactosidase, it was possible to sort live dissociated Drosophila cells that express lacZ (Krasnow et al., 1991), and a modification of this method allowed the detection of lacZ expression in live zebrafish embryos (Lin et al., 1994). While detection of lacZ expression enabled the discrimination between transgenic and nontransgenic fish, false-positive signals were obtained and no resolution at the cellular level was demonstrated (Lin et al., 1994).

To develop a more sensitive and reliable reporter for gene expression, we have examined β-lactamase as a marker for gene expression in live zebrafish embryos. β-Lactamases are very efficient bacterial enzymes for which several colorimetric substrates are known. Recently, a membrane permeable ester derivative of a fluorogenic substrate for β-lactamase was developed which allows the detection of enzyme activity in intact mammalian tissue culture cells (Zlokarnik et al., 1998). The substrate is composed of two fluorophores attached to cephalosporin which brings them close together to allow for efficient fluorescence resonance energy transfer (FRET) (6-chloro-7-hydroxycoumarin was used as the donor and fluorescein as the acceptor fluorophore). When the intact substrate is excited by light at 409

1 To whom correspondence should be addressed. Fax: (0761) 203 2597. E-mail: razerez@ruf.uni-freiburg.de.
nm, emission of the acceptor at 520 nm (green) can be observed. β-Lactamase attack splits off the fluorecein moiety from the rest of the molecule resulting in disruption of the FRET and a shift to the emission of the donor at 447 nm wavelength (blue).

Here, we describe experiments using the newly developed fluorescent substrate for β-lactamase in live zebrafish embryos. We show that the substrate we used allows for low levels of gene expression to be monitored, providing a new highly sensitive method for studying early embryogenesis in zebrafish.

MATERIALS AND METHODS

The β-lactamase gene was amplified by PCR from the pBlueScript plasmid and was cloned into pBlueScript for production of mRNA in vitro, or into the pXex vector (Johnson and Krieg, 1994) to be used in DNA injection experiments. The PCR primers used for β-lactamase amplification replace the bacterial signal sequence by codons for Met-Gly. Both the neomycin resistance gene and the GFP gene were cloned into the same vector (pXex) to allow a controlled comparison between the markers. The pXex–GFP construct (pESG) was provided by C.-B. Chien and D. Gilmour.

One-cell-stage embryos were dechorionated using 4 mg/ml pronase in 0.3× Danieau’s solution (174 mM NaCl, 0.21 mM KCl, 0.12 mM MgSO₄, 0.18 mM Ca(NO₃)₂, 0.15 mM Hepes, pH 7.6). The embryos were washed and microinjected. CCF2 (at a concentration of 0.25, 1, or 2 mM) was injected in a 50 mM KCl solution with mRNA, with plasmid DNA or alone. The pXex–GFP construct (pESG) was provided by C.-B. Chien and D. Gilmour.

One-cell-stage embryos were dechorionated using 4 mg/ml pronase in 0.3× Danieau’s solution (174 mM NaCl, 0.21 mM KCl, 0.12 mM MgSO₄, 0.18 mM Ca(NO₃)₂, 0.15 mM Hepes, pH 7.6). The embryos were washed and microinjected. CCF2 (at a concentration of 0.25, 1, or 2 mM) was injected in a 50 mM KCl solution with mRNA, with plasmid DNA or alone. In vitro transcribed mRNA was prepared using the mMessage mMachine (Ambion) and was cloned into pBluescript for production of the soluble substrate (3 μM) of the dispersing agent Pluronic F127 and by mild sonication. The substrate was used in DNA injection experiments. The PCR primers used for β-lactamase amplification replace the bacterial signal sequence by codons for Met-Gly. Both the neomycin resistance gene and the GFP gene were cloned into the same vector (pXex) to allow a controlled comparison between the markers. The pXex–GFP construct (pESG) was provided by C.-B. Chien and D. Gilmour.

Examination of Possible Effects of CCF2 on Zebrafish Embryos Survival

Using CCF2/AM in living mammalian tissue culture cells allows gene expression to be monitored and facilitates cell sorting based on the degree of substrate conversion developed (Zlokarnik et al., 1998). However, the possible toxicity of CCF2 in developing embryos whose survival depends on function of many different cell types remained to be determined. Toward this end, we injected one-cell-stage embryos with the β-lactamase substrate at three concentrations. The results of this experiment are summarized in Table 1. When compared with noninjected fish, injection of 0.25–2 mM CCF2 does not seem to significantly influence the viability of the embryos as well as of the developing fish. Therefore, the substrate for β-lactamase can be used in fish without affecting cell viability, while potentially allowing visualization of gene expression in live embryos and sorting of live cells.

Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved.
β-Lactamase Can Be Used as a Cell Autonomous Dominant Marker

In order for β-lactamase to serve as a marker for gene expression, both the enzyme and the cleaved product should be confined to the cells that expressed the protein. To test this point we first injected 1-cell-stage embryos with CCF2 and at the 16-cell-stage β-lactamase mRNA was injected to obtain mosaic expression of the marker protein. Indeed, the injected embryos show regions where the substrate was cleaved as well as other regions where the substrate was left intact as indicated by regions of cells showing blue and green fluorescence respectively (Fig. 2A).

To demonstrate the colocalization of the β-lactamase RNA and the blue signal, we used rhodamine labeled dextran to trace the cells that were injected with the RNA. Embryos preloaded with CCF2 were coinjected with rhodamine dextran and β-lactamase mRNA at the 64-cell stage. At 30% epiboly stage, the yolk was removed and the

FIG. 1. Rapid detection of β-lactamase gene expression. (A–D) One-cell-stage embryos were injected with 1 mM CCF2 (right embryo) or with 1 mM CCF2 + 10 ng/μl pXex-β-lactamase plasmid DNA (left embryo). Detection with the CCF2 filter set at the oblong stage (3.7 h at 28.5°C) (A), sphere (4 h at 28.5°C) (B), 30% epiboly (4 h at 28.5°C) (C), 80% epiboly (8.5 h at 28.5°C) (D), and 10 somites stage (14 h at 28.5°C) (E). (F–H) One cell stage embryos were injected with 10 ng/μl of pXex-mmGFP plasmid and fluorescence was detected using the fluorescein filter set at 50% epiboly (5.3 h at 28.5°C) (F), 80% epiboly (8.5 h at 28.5°C) (G) and at the 10 somites stage (14 h at 28.5°C) (H).
embryos were visualized using fluorescent filters for rhodamine or with filters for CCF2 detection. Only cells showing rhodamine fluorescence also show blue fluorescence indicative of β-lactamase activity (Figs. 2B and 2C). We therefore conclude that spatially restricted gene expression patterns can be identified using β-lactamase as a marker in early embryos.

β-Lactamase Is an Extremely Sensitive Marker for Gene Expression in Live Zebrafish Embryos

To compare the sensitivity of the β-lactamase system with that of GFP, we tested our ability to detect gene expression in fish injected with either β-lactamase or GFP expression constructs. For this purpose, the β-lactamase gene, the mmGFP gene which is a version of GFP that exhibits improved stability and fast formation of active chromophore (Siemering et al., 1996), and the neomycin gene (as a negative control) were cloned downstream of the Xenopus EF1α promoter (Johnson and Krieg, 1994) (the GFP construct pESG was kindly provided by C.-B. Chien). CCF2 and low concentrations of the plasmids (10 ng/μl) were injected into one-cell-stage embryos. The developing embryos were monitored for green fluorescence and for conversion of the fluorogenic β-lactamase substrate from green to blue fluorescence. For detection of the CCF2 substrate we used only 30% of the light intensity provided by a 100-W mercury lamp. Nevertheless, conversion of the β-lactamase substrate was detected much earlier than the fluorescence generated by GFP for which we used the full power of the lamp (Figs. 1B and 1F). Even under these conditions, the intensity of the signal was stronger for the β-lactamase as manifested by a significantly shorter exposure time (i.e., 33%) required for photographing the embryos. Blue fluorescence was visible in embryos immediately following the initiation of zygotic transcription at midblastula transition (MBT) (Kane and Kimmel, 1993), just before the sphere stage. β-Lactamase activity was frequently detected first at a specific part of the embryo (Fig. 1B), presumably close to the injection point resulting in a gradient of DNA concentration in the embryo. The initial localized signal has spread rapidly and, in most cases, conversion of substrate was detected throughout the embryo by 30% epiboly (Fig. 1C). No conversion of substrate from green fluorescent to blue fluorescent was observed in noninjected embryos (Figs. 1A–1E) and neither in embryos

<table>
<thead>
<tr>
<th>CCF2 concentration</th>
<th>24 h Survival rate</th>
<th>2 months Survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninjected</td>
<td>0.99 ± 0.01</td>
<td>0.71 ± 0.03</td>
</tr>
<tr>
<td>0.25 mM</td>
<td>0.96 ± 0.06</td>
<td>0.80 ± 0.11</td>
</tr>
<tr>
<td>1 mM</td>
<td>0.98 ± 0.04</td>
<td>0.72 ± 0.07</td>
</tr>
<tr>
<td>2 mM</td>
<td>0.86 ± 0.18</td>
<td>0.59 ± 0.19</td>
</tr>
</tbody>
</table>

Note. Fish were injected with CCF2 at the concentrations indicated in the table. The fraction of the fish that survived was determined after 24 h and after 2 months. The results were obtained in 3 independent experiments on a total of 106 embryos (0.25 mM CCF2), 134 embryos (1 mM CCF2), and 144 embryos (2 mM CCF2).
injected with a DNA construct expressing the neomycin resistance gene under the control of the Xenopus EF1α promoter (not shown). The accumulating light blue fluorescence around the yolk (control embryos in Figs. 1D and 1E) is significantly different from the positive blue signal allowing reliable discrimination between β-lactamase-injected and noninjected embryos even after the substrate and the product are cleared from the embryo proper (Fig. 1E).

At the early stages of embryogenesis, no GFP fluorescence could be detected when the same amount of plasmid was injected. Weak GFP expression could be first observed in small clusters just prior to the shield stage, but it was not until 70% epiboly that a significant number of cells (20–30%) showed green fluorescence. Expression of GFP in the majority of the cells at the level detected by the β-lactamase at 30% epiboly, was achieved only around the 90% epiboly. Standardized for development at 28.5°C, we found that using β-lactamase as a marker, we could detect gene expression in cells that receive low number of DNA molecules 4–5 h before those cells would exhibit detectable cytoplasmic GFP expression.

As mentioned above, the substrate is cleared from the embryo after the completion of epiboly. making β-lactamase-CCF2 a useful system for monitoring gene expression before somitogenesis. In contrast, GFP can be used at later stages is not possible by applying the method described here. Therefore, to detect gene expression in live embryos at later stages is not possible by applying the method described here. Therefore, to detect gene expression in live embryos later stages is possible by applying the method described here. Therefore, to detect gene expression in live embryos at later stages of zebrafish embryos, GFP remains the marker of choice.

CONCLUSIONS

We have demonstrated that the CCF2-β-lactamase system can be used in live embryos to monitor gene expression. The system is unique in that it is highly sensitive, yet allows high-resolution detection of gene expression patterns without compromising viability. While the experiments described in this report were carried out using zebrafish embryos, this system is likely to be applicable for embryos of other organisms such as Drosophila or Xenopus.

ACKNOWLEDGMENTS

We thank Michal Reichman for comments on the manuscript, Yotam Raz for help with the fish work and Chi-Bin Chien for the pESG plasmid. This work was supported by an NSF Grant IBN-9317469 to W.D. and a Human Frontier Science Program grant to E.R.

REFERENCES

Received for publication May 25, 1998
Revised June 25, 1998
Accepted June 26, 1998