Combined TP53 mutation/3p loss correlates with decreased radiosensitivity and increased matrix-metalloproteinase activity in head and neck carcinoma

Sharat C. Raju a, Samantha J. Hauff a, Aaron J. Lemieux a, Ryan K. Orosco a, Andrew M. Gross b, Linda T. Nguyen a, Elamprakash Savariar c, William Moss a, Michael Whitney c, Ezra E. Cohen d, Scott M. Lippman d, Roger Y. Tsien c,e, Trey Ideker b,f, Sunil J. Advani g, Quyen T. Nguyen a,c,d,⇑

⇑Corresponding author at: University of California San Diego, 9500 Gilman Drive La Jolla, CA 92037, USA. Tel.: +1 858 822 3965; fax: +1 858 534 5270.
E-mail address: q1nguyen@ucsd.edu (Q.T. Nguyen).

Objective: Patients with head and neck squamous cell carcinoma (HNSCC) containing TP53 mutation and 3p deletion ("double-hit") have poorer prognosis compared to patients with either event alone ("single-hit"). The etiology for worse clinical outcomes in patients with "double-hit" cancers is unclear. We compared radiosensitivity of cell lines containing both TP53 mutations and deletion of Fragile Histidine Triad (FHIT, the gene most commonly associated with 3p deletion) to "single-hit" lines with only TP53 mutation. We compared radiosensitivity in a "single-hit" cell line with TP53 mutation converted to "double-hit" using RNA interference targeting FHIT. Finally, we compared matrixmetalloproteinase-2/9 (MMP-2/9) activity, a previously-established biomarker for tumor aggressiveness, in xenograft tumors derived from these cell lines.

Materials/methods: TP53 mutation and FHIT deletion profiles of HNSCC lines were established using Cancer Cell Line Encyclopedia (CCLE). We used RNA-interference to convert a "single-hit" cell line (SCC4) to "double-hit". Cultured cells were examined for radiosensitivity and cisplatin sensitivity. MMP-2/9 activity was evaluated in "double-hit" versus "single-hit" tumors using ratiometric activatable cell-penetrating peptide (RACPP) in tongue (n = 17) and flank xenografts (n = 4).

Results: Radiotherapy caused greater double-stranded DNA breaks in "single-hit" vs naturally occurring and engineered "double-hit" cells. In-vivo, "double-hit" xenografts demonstrated higher MMP-2/9 activity compared to "single-hit" xenografts (p < 0.01). There was no difference in cisplatin sensitivity between the cell lines.

Conclusions: TP53 mutation combined with FHIT deletion correlates with decreased radiosensitivity in HNC cell lines. Xenograft from "double-hit" cells exhibit increased MMP-2/9 activity. These findings may in part account for the worse clinical outcome seen in patients with HNSCC "double-hit" tumors.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is a source of significant morbidity and mortality worldwide [1]. Well-established risk factors for HNSCC include tobacco, alcohol, and human papilloma virus (HPV) [1]. Current staging and clinical management HNSCC patients are based on anatomical location and size [2]. If patients undergo surgical excision, management decisions are guided by presence or absence of bony invasion, lymph-node metastasis, or lymph-node extracapsular spread. Patients with locally advanced disease are treated with multimodality therapy including chemotherapy, radiotherapy and surgery.

http://dx.doi.org/10.1016/j.oraloncology.2015.01.014
1368-8375 © 2015 Elsevier Ltd. All rights reserved.
Many prevalent malignancies such as breast, colon, lung, or prostrate cancer have diagnostic assays based on genomic profiling. HER-2 and estrogen receptor expression, or ALK, EGFR and KRAS mutation. HPV has recently been identified as being responsible for the increasing incidence of oropharyngeal SCC (OPSCC) [3,4], and HPV positive (HPV+) tumor status is currently the strongest prognostic factor for these patients [4,5]. However, there are currently no widely adopted prognostic assays for HPV-negative (HPV−) HNSCC.

We previously analyzed The Cancer Genomic Atlas (TCGA), which contains the largest collection of patient HNSCC tumor specimens [6]. In HPV−tumors, reduced survival outcomes associated with tumor protein p53 (TP53) mutation occur only in combination with loss of chromosome 3p [6]. In these patients, median survival decreased from >5 years for TP53 mutations to only 1.7 years for both mutational events (“double−hit”) [6]. These findings are independent of clinical stage and replicated in an independent HNSCC cohort [6]. In HPV + tumors, we believe E6−mediated inactivation of TP53 also acts in synergy with 3p deletion to produce poor survival outcomes [6].

Our prior analysis of the TCGA demonstrated that of the genes on the 3p chromosome, FHIT, a known tumor suppressor gene involved in aerodigestive cancer, best correlates with 3p status [6]. The FHIT gene is located on a chromosomal fragile site, and loss of the 3p arm is most commonly mediated by chromosome breakage at this site [7]. Thus, 3p deletion is commonly associated with decreased FHIT protein expression or reduced copy number at the 3p.14.2 FHIT locus [7]. Given these findings, our analysis in this study uses FHIT copy number as representative of 3p status and thus a proxy for “single−hit” (TP53 only) vs “double−hit” (TP53 and FHIT deletion) in HNSCC cell lines. It has also been shown that FHIT and p53 status are linked in development of lung cancer, although little is known about the molecular nature of this interaction [8]. Here, we analyze data from the TCGA to examine whether TP53 and 3p status are linked in HNSCC patients.

The etiology for worse clinical outcomes in TCGA patients with “double−hit” cancers is unclear. Potential explanations include greater resistance to radiation monotherapy or more aggressive tumor biology in cancers with the “double−hit.” We do not anticipate a difference in cisplatin sensitivity given its lack of efficacy as monotherapy in clinical practice. To examine these hypotheses, we obtained four human tongue squamous cell carcinoma cell lines from American Type Culture Collection (ATCC). We utilized the Cancer Cell Line Encyclopedia (CCLE) to examine differences in their TP53 mutational and FHIT copy number status, corresponding with the prognostic markers identified in the TCGA.

To compare radiosensitivity in vitro, we utilized a comet−tail assay to measure each cell line’s ability to repair ionizing radiation−induced DNA damage. FHIT knockout has been previously associated with increased activation of the ATR/CHK1 pathway and stronger cell−cycle checkpoint responses, resulting in greater cellular repair in response to ionizing radiation [9]. We would thus expect reduced radiation−induced DNA damage in “double−hit” lines with FHIT deletion compared to “single−hit” lines with intact FHIT.

We also examined the aggressiveness of “single−hit” versus “double−hit” cell lines by comparing their respective matrix−metalloproteinase (MMP) activity levels. MMP expression has previously been associated with tumor aggressiveness and patient prognosis in head and neck cancer [15−19]. Absolute levels of MMP2/9 have been used to differentiate between benign papillomas and carcinoma of the larynx [15]. Increased MMP2/9 expression has been correlated with higher cancer grade [16] and reduced survival in HNSCC [17,18]. In tongue SCC, increased MMP2/9 expression directly correlates with incidence of lymph node metastases [19]. Recently, our own work has demonstrated that MMP over-expression in HPV + tumors predicts poorer survival [14]. Additionally, HPV−tumors, which have a more aggressive phenotype compared to their HPV + counterparts, also express higher levels of MMP [14]. We compared MMP activity in our cell lines using previously described ratiometric activatable cell−penetrating peptides (RACPP) [10−12]. The RACPP relies on tumor−associated MMP2/9 to cleave an intervening linker, resulting in increased Cy5/Cy7 fluorescent signal ratio, and has previously been used for margin detection during surgery [12–14].

Methods

Cell culture

HPV−lines SCC−4, SCC−15, and SCC−25 (ATCC) were maintained in Dulbecco’s modified Eagle’s medium with nutrient mixture F−12 (DMEM/F−12) containing 10% fetal bovine serum (FBS), supplemented with 400 ng/mL of hydrocortisone. HPV−HNSCC line CAL−27 (ATCC) was maintained in DMEM containing 10% FBS. Cells were incubated at 37 °C in 5% CO2.

Analysis of the Cancer Cell Line Encyclopedia (CCLE)

The CCLE (Broad Cancer Institute) is the largest publicly−available compilation of cell line data, including information regarding gene expression, chromosomal copy number, and mutational status for 33 known tumor suppressor and oncogenes. We extracted data regarding normalized FHIT copy number, reported as log2(copy number)/2, and TP53 mutational status for all cell lines utilized in the study.

In−vitro radiosensitivity assay

Neutral comet assay was used to measure ionizing radiation (IR) induced DNA double−strand breaks. Cells were grown to 70% confluence, irradiated with IR, harvested 15 min post IR, suspended in agarose gel and lysed per assay directions (Trevigen). Samples underwent electrophoresis under neutral conditions and were then stained with Sybr Green. Comet tails were counted in multiple fields (>50 cells per sample) and analyzed using CometScore (TriTek Corp). To minimize bias, slides were analyzed in a blinded manner to treatment. 10−15 fields per slide were imaged randomly to achieve a fair representation.

In−vitro cisplatin sensitivity assay

Cells were plated in 96−well plates over a 24−h period. Starting cell counts were 2.5 K per well for SCC cell lines and 1.25 K per well for CAL−27. The starting counts were determined based on previous cell growth curves to prevent cell overgrowth and contact inhibition during the assay. Varying concentrations of cisplatin mixed in media (0–100 μM) were added to the cells. Each combination of cell line and cisplatin concentration was replicated in quintuplicates. Cells were incubated for another 72 h before undergoing a MTT proliferation assay to evaluate growth. Cell growth in cisplatin−exposed wells was recorded as a percentage of non−exposed wells. Initial IC50 and kill curves were generated using SigmaPlot.

RNA interference

The 293T producer cell line was transfected with small hairpin ribonucleic acid (shRNA) expressing lentiviral constructs and packaging plasmid mix (System Biosciences) using X−tremeGENE (Roche, Indianapolis, IN). pGIPZ_FHIT lentiviral vectors (#113,859, #225,339, #267,106, #307,150, #307,152 and #307,153) were...
obtained from GE Dharmacon (Lafayette, CO). Supernatants were collected 48 h after transfection, filtered using a 0.45-μm-pore-size nitrocellulose filter, and applied to SCC-4 cells. After 48 h, the cells were selected in puromycin (2 μg/ml) containing media. As a control, cells were infected with a lentivirus expressing scrambled control shRNA (pGIPZ non-silencing shRNA mir RHS 4346, Openbiosystems).

RNA was extracted using the RNeasy Mini kit (Qiagen). One step QRT-PCR was performed using Brilliant II SYBR Green Master Mix (Agilent Technologies) and a Stratagene™ Mx3000P Q-RT-PCR system (Stratagene, La Jolla, CA). Primers used for detecting FHIT expression were (pair#1 AATACCTCCTGCTTAAAG and CGAAG-GACAGTTCTGGTTT and pair#2 TCTGTAAAGTGCTAGTGC and CGAAGGACAGTTCTGGTTTG). Protein Phosphatase-2 (PP2A) was used for internal control. Gene knockdown was calculated using the ΔΔCt method.

RACPP peptide synthesis

RACPP was synthesized as previously described [15]. RACPP contains a Cy5 fluorophore attached to a poly-cationic moiety and a Cy7 fluorophore connected to a neutralizing poly-anionic arm. The fluorophores are bridged via a linker that is cleavable by MMP-2 and MMP-9. Following MMP cleavage of RACPP, FRET is mediated by the Cy5 fluorophore attached to a poly-cationic moiety and the Cy7 fluorophore connected to a neutralizing poly-anionic arm. The fluorophores are bridged via a linker that is cleavable by MMP-2 and MMP-9. Following MMP cleavage of RACPP, FRET is mediated by the Cy5 fluorophore attached to a poly-cationic moiety and the Cy7 fluorophore connected to a neutralizing poly-anionic arm.

Cell culture and mouse tumor xenografts

Tongue xenografts: nu/nu mice (aged 3–6 months) were injected with cells (~10^6 for CAL-27, ~5 x 10^6 for SCC-4, SCC-15, SCC-25) into the anterior tongue (20 μL total volume) to generate orthotopic xenografts. Flask xenografts: nu/nu mice were injected with cells under the skin overlying the flank (~10^6 for CAL-27, ~5 x 10^6 for SCC-4, 100 μL volume). Two SCC-4 and two CAL-27 injections were performed for each mouse. The number of injected cells reflects different rates of tumor formation between the cell lines. We wanted to establish consistency in timing and size of tumor formation among all cell lines.

In-vivo imaging with RACPP

Mice with tumor size > 4–5 mm or weight loss > 20% were anesthetized with isoflurane and injected intravenously with RACPP (0.4 nmol RACPP/g body weight in 100 μL of nanopure water). Two hours following RACPP injection, mice were re-anesthetized (100 mg/kg ketamine and 5 mg/kg midalozam) for imaging.

For tongue tumors, soft tissues of the neck were surgically exposed and imaged (Maestro, Cambridge Research and Instrumentation, Woburn, MA) to obtain a background Cy5/Cy7 ratio. For flank tumors, the masses were carefully dissected from the underlying skin. Mice were then imaged with the flank skin removed and the underlying tumors exposed (Maestro, CRI). Cy5/Cy7 ratios from surrounding muscle were used as background to generate normalized Cy5/Cy7 ratios for flank tumors. Multi-spectral imaging involved exciting Cy5 at 620 ± 10 nm followed by use of a tunable LCD emission filter to perform stepwise emission measurements from 640 to 940 nm. Numerator (Cy5) and denominator (Cy7) images were generated by integrating spectral images over pre-defined wavelengths (660–720 nm for Cy5 and 760–830 nm for Cy7). Ratio images were created and color-encoded as hue (blue–red scale) using custom software. Monochromatic Cy5 and Cy7 images were also generated for processing in Image J.

Image processing and ratio calculations

Monochromatic Cy5 and Cy7 images were extracted from multispectral cube images using custom software, as described above. The “Image Calculator” function was utilized on Image J to divide the Cy5 image by the Cy7 image, generating a new image where the Cy5/Cy7 ratio was encoded as pixel intensity. Ratios were averaged from regions of histologically-confirmed tumor. Mean tumor Cy5/Cy7 ratios were then normalized to Cy5/Cy7 ratios of background tissue.

Histologic processing and pathologic examination

Following imaging, tongue and flank tissues were embedded in cryopreservative, frozen in liquid nitrogen, and stored at −80 °C. 5-μm sections were fixed in formalin and stained with hematoxylin and eosin (H&E). The samples were evaluated by a pathologist blinded to experimental conditions.

Statistics

For multiple groups, statistical analysis was performed with one-way ANOVA. Individual groups were compared with an independent sample t-test. Paired data was compared using a two-tailed paired sample t-test. Statistical significance was set at a p-value of less than 0.05.

Results

Cell line mutational data from the CCLE

We examined the CCLE for TP53 mutational status and FHIT (3p14.2) copy number of ATCC tongue SCC cell lines utilized in this study (Table 1). All cell lines (SCC-4, SCC-15, SCC-25, CAL-27) were represented in the CCLE.

Normalized FHIT copy numbers (log₂CopyNumber/2) were −0.507, −6.34, −5.48, and −5.92 for SCC-4, SCC-15, SCC-25, and CAL-27 respectively (Table 1). These copy numbers suggest homozygous loss of FHIT (FHIT^−/−) for SCC-15, SCC-25, and CAL-27, and FHIT heterozygosity (FHIT^+/−) for SCC-4. The TP53 gene was mutated in all cell lines. SCC-4 contains a missense mutation (G→A) on nucleotide 7578479 of chromosome 17p, SCC-15 harbors a splice-site mutation (C→T) on nucleotide 7578176, SCC-25 has a frame-shift deletion event starting on nucleotide 7578222, and CAL-27 contains a missense mutation (T→A) on nucleotide 7578271.

In summary, the mutational profiles of the SCC-15, SCC-25, and CAL-27 cell lines correlate with the “double-hit” patients seen in our prior TCGA analysis, due to the presence of both FHIT loss and TP53 mutation. In contrast, the SCC-4 cell line harbors a TP53 mutation without loss of FHIT, thus reflecting a “single-hit” mutational profile.

Cell lines with combined FHIT deletion and TP53 mutation are more resistant to ionizing radiation

The primary mode of cell death following conventional fraction doses of IR is mitotic catastrophe through IR induced lethal DNA double strand breaks. To investigate the hypothesis that cell lines
with the “double-hit” mutation–deletion profile are more resistant to radiotherapy, we performed a neutral comet-tail assay on all cell lines following treatment with 2-Gy of radiation. This dose of IR is clinically relevant as HNSCC patients treated with radiotherapy are treated with daily fractions of 2 Gy.

Using comet-tail length as an indicator of DNA double strand breaks, we found increased sensitivity to irradiation in the “single-hit” SCC-4 cell line compared to the “double-hit” cell lines, SCC-15, SCC-25, and CAL-27. Upon exposure to 2 Gy, the SCC-4 cell line demonstrated a longer comet tail length of 133.96 ± 6.83 versus 64.90 ± 7.27 in SCC-15 (p < 10⁻⁶), 33.31 ± 7.13 in SCC-25 (p < 10⁻⁶), and 54.79 ± 4.18 (p < 10⁻⁶) in CAL-27 (Fig. 1B). In non-irradiated cells, there was no difference in comet-tail length between the 4 HNSCC cell lines (SCC-4: 17.39 ± 3.12, SCC-15: 24.04 ± 4.80, SCC-25: 29.28 ± 3.76, CAL-27: 23.15 ± 5.57), indicating that the double-stranded breaks were appropriately radiation dependent (Fig. 1A).

Knockdown of FHIT in cell lines with TP53 mutation induces resistance to radiation treatment

To further investigate whether “double-hit” mutated cell lines are more radioresistant than “single-hit” cell lines, we knock down FHIT expression in our SCC-4 cell line using RNA interference (RNAi). The wild-type (WT) SCC-4 cell line only possesses a TP53 mutation, thus down-regulating FHIT expression effectively approximates a “double-hit” cell line. We confirmed adequate knockdown of FHIT expression in RNAi SCC-4 clones using Quantitative Real-Time Polymerase Chain Reaction (QPCR) with two sets of primers. WT SCC-4 demonstrated relative FHIT expression, compared to standard, of 104.77% ± 5.28% and 91.95% ± 7.59, using primer sets 1 and 2 respectively. We obtained 6 clones of RNAi producing FHIT expression ranging from 26% to 80% of wild type. Clones 1 and 2 were selected as they showed the lowest FHIT expression levels: Clone #1 of RNAi SCC-4 demonstrated FHIT expression levels of 34.92% ± 2.59% and 34.42% ± 4.06%. Clone #2 FHIT expression levels were 26.59% ± 2.30% and 28.02% ± 2.45% (Fig. 1B).

We compared radiosensitivity in WT SCC-4 with RNAi SCC-4 clones using the previously described comet tail assay. We found increased sensitivity to irradiation in WT “single-hit” SCC-4 cell lines compared to RNAi “double-hit” SCC-4 clones. Upon exposure to 2 Gy, WT SCC-4 demonstrated a longer comet tail length of 133.96 ± 6.83 versus 103.93 ± 6.80 in Clone #1 of RNAi SCC-4 and 65.34 ± 4.76 in Clone #2 of RNAi SCC-4 (Fig. 1C).

Cell lines have similar sensitivity to cisplatin mono-treatment regardless of FHIT/TP53 status

We next investigated the hypothesis that all cell lines were similarly resistant to chemotherapy by performing a cisplatin sensitivity assay. Cells were incubated in varying concentrations of cisplatin for 72 h. Cisplatin inhibitory concentration (IC₅₀) values were measured as 1.75 μM ± 0.09 for SCC-4, 1.63 μM ± 0.29 for SCC-15, 4.64 μM ± 0.28 for SCC-25, and 2.39 μM ± 0.41 for CAL-27 (Supp Fig. 1), representing no biologically significant difference in cisplatin sensitivity between cell lines.

Xenografts with combined FHIT deletion and TP53 mutation have increased MMP2/9 activity

Using our MMP2/9 cleavable RACPP probe, we evaluated in vivo MMP-2/9 activity of tumor xenografts derived from our cell lines. Cleavage of RACPP by tumor-associated MMP2/9 results in increased Cy5/Cy7 fluorescence ratio. We have previously used these xenografts to examine the role of RACPP in margin detection for HNSCC, but did not examine differences between “double-hit” and “single-hit” cell lines [14].

Table 1

Cancer cell line encyclopedia mutation data for HNSCC cell lines.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>TP53 mutational status</th>
<th>Normalized FHIT copy number</th>
<th>Overall mutational status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC4</td>
<td>Missense mutation</td>
<td>-0.507</td>
<td>Mut TP53</td>
</tr>
<tr>
<td>SCC 15</td>
<td>Splice site mutation</td>
<td>-6.34</td>
<td>FHIT deletion Mut TP53</td>
</tr>
<tr>
<td>SCC 25</td>
<td>Frame-shift/deletion</td>
<td>-5.48</td>
<td>FHIT deletion Mut TP53</td>
</tr>
<tr>
<td>CAL 27</td>
<td>Missense mutation</td>
<td>-5.92</td>
<td>FHIT deletion Mut TP53</td>
</tr>
</tbody>
</table>

Fig. 1. HNSCC cell lines with both TP53 mutation and FHIT deletion are more radioresistant compared to a HNSCC cell line containing only TP53 mutation. Knockdown of FHIT in a HNSCC cell line originally containing only a TP53 mutation increases radioresistance. (A) When exposed to 2 Gy ionizing radiation (black bars), the SCC-4 cell line, containing only a TP53 mutation, demonstrates greater double-stranded DNA breaks, as measured by comet-tail assay, compared to SCC-15, SCC-25, and CAL-27 cell lines, which contain both TP53 mutation and FHIT deletion. (B) Using RNA interference, we decreased FHIT expression by almost 80% in SCC-4 cell line. (C) When exposed to 2 Gy ionizing radiation, the wild-type SCC-4 cell line, containing only TP53 mutation, demonstrated greater double-stranded DNA breaks compared to clones containing TP53 mutation with FHIT knockdown.
Fig. 2. Xenografts from HNSCC cell lines with both TP53 mutation and FHIT deletion demonstrate higher MMP activity compared to those from cell lines with only TP53 mutation. Legend: MMP-cleavable RACPP demonstrates lower fluorescent signal contrast in (A) histology-confirmed SCC-4 tongue xenografts, containing only a TP53 mutation, compared to (B) CAL-27, containing both TP53 mutation and FHIT deletion. (C) Greater MMP activity in CAL-27 flank xenografts compared to SCC-4 xenografts, when implanted in the same mouse. (D) Bar graph demonstrating higher MMP activity in xenografts from cell lines with both TP53 mutation and FHIT deletion compared to xenografts from cell lines with only TP53 mutation.

Following intravenous injection of RACPP, tumors were imaged in the living mouse as previously described. Following imaging, tumors were excised and confirmed histologically by a pathologist blinded to experimental conditions. Mean Cy5/Cy7 ratios, normalized to background were 1.38 ± 0.06 for SCC-4 (Fig. 2A, D), 1.93 ± 0.11 for CAL-27 tumors (Fig. 2B, D) and 1.66 ± 0.07 for SCC-25, 1.60 ± 0.03 for SCC-15 (Fig. 2D). Mouse xenografts derived from “double-hit” TP53/FHIT cell lines, including SCC-15, SCC-25, and CAL-27, demonstrated a higher normalized mean Cy5/Cy7 ratio compared to xenografts derived from the “single-hit” TP53 SCC-4 cell line (p < 0.05 for SCC-25 and SCC-15 vs SCC-4, p = 0.01 for CAL-27 vs SCC-4, Fig. 2D). CAL-27 also demonstrated higher normalized mean Cy5/Cy7 ratios compared to SCC-25 and SCC-15 (p < 0.05 for each).

To reduce experimental variability produced by RACPP dosing and distribution, we employed a flank tumor model in which a given single mouse was injected with both SCC-4 and CAL-27 tumor cells, thus decreasing inter-animal variability in RACPP cleavage (n = 4 mice, 8 SCC4 tumors, 8 CAL-27 tumors). We found higher normalized mean Cy5/Cy7 ratios for “double-hit” CAL-27 flank tumors compared to “single-hit” SCC-4 flank tumors (2.05 ± 0.112 for CAL-27, 1.52 ± 0.037 for SCC-4, p < 0.005), consistent with the tongue xenograft data (Fig. 2C).

Discussion

Epithelial cancers of the head and neck remain a challenging disease to manage and outcome is among the worst of any cancers. Mortality remains high for most patients, and curative therapy can be quite morbid and impair survival quality of life. Targeted therapy to tumor specific biomarkers has long been an aim of head and neck cancer research; however, it has remained an elusive goal to date. The utility of such identified biomarkers could be threefold: developing targeted cancer therapies, stratifying treatment aggressiveness, and improving prognostic capabilities. Identification of HPV’s role in the development of HNSCC has led to progress in the latter two of these goals, but little headway has been made for HPV-negative tumors.

We have previously found in HPV-HNSCC tumor specimens from TCGA that TP53 mutation commonly occur in combination with loss of chromosome 3p [6]. In these patients, median survival decreased from >5 years for TP53 mutations to only 1.7 years for both mutational events (“double-hit”) [6]. In this study, we evaluated potential mechanistic etiologies that may account for this observation.

We compared radiosensitivity of “double-hit” HNSCC cell lines containing both TP53 mutations and deletion of FHIT (as a proxy for 3p deletion) to “single-hit” lines with only TP53 mutation. We also compared sensitivity to ionizing radiation in a “single-hit” cell line converted to “double-hit” using RNA interference. We found that the combined genomic events of TP53 mutation and FHIT deletion correlate with decreased radiotherapy sensitivity in HNSCC cell lines. Increased resistance to radiotherapy could, in part, account for the poor clinical outcome of patients with the “double-hit” profile. This findings parallels prior studies demonstrating increased radioresistance in cells with FHIT knockout [9].

MMP2/9 mRNA expression has previously been correlated with increased HNSCC clinical aggressiveness [15–19]. We compared matrix-metalloproteinase-2/9 (MMP-2/9) activity between xenograft tumors derived from “double-hit” versus “single-hit” cell lines. We found that xenograft tumors from “double-hit” cell lines have increased MMP-2/9 activity compared to tumors from “single-hit” cell lines, which could also account, in part, for the poor clinical outcome of patients with the “double-hit” profile.

Cisplatin is rarely utilized as a mono-therapy and typically given as a radio-sensitizer. Additionally, all of our HNSCC cell lines contain TP53 mutation- they only vary with respect to FHIT status. Previous studies have shown that cisplatin sensitivity is highly dependent on a functioning p53 protein. Mutation of TP53 in all cell lines would wash-out any differences in terms of cisplatin sensitivity. Our findings support our original hypothesis that no
significant difference in cisplatin sensitivity exists between “single-hit” and “double-hit” cell lines.

Discovery of the “double-hit” phenomenon of 3p loss and TP53 mutation offers the potential for improved management of HPV-HNSCC [6]. The in vitro and in vivo experiments described here, using “single hit” versus “double hit” cell lines, support our findings from the TCGA cohort. The combined genetic event of FHIT loss and TP53 mutation in established HNSCC cell lines and xenografts confer resistance to radiotherapy and increased MMP2/9 activity. Whether the correlation between MMP-2/9 activity and the combined 3p-TP53 events are causally linked or simply both markers of “bad actors” remains to be seen. In future studies, we hope to compare the effect of ionizing radiation on xenografts derived from “single hit” versus “double hit” cell lines.

These findings suggest a potential mechanistic etiology for the poor clinical outcome observed in patients with “double-hit” HPV-HNSCC tumors and may provide new molecular targets for treatment.

Conflict of Interest

Authors MW, RYT and QTN are scientific advisors to Avelas Biosciences which has licensed ACPP technology from UCSD.

Acknowledgements

The authors would like to thank Paul Steinbach for assistance with Maestro and fluorescence imaging, Joan Kanter for administrative and logistical assistance and lab members for helpful discussion. This work was funded by Burroughs Wellcome Fund – (CAM) to QTN; NIH/NIDCD Ruth L. Kirschstein National Research Training Award, T32 (DC000028) to RKO; CA and BCRP Grants to RYT; NIH T32 Grant to SJH; NIH TL1 Grant (RR031979) to SCR; UC CRCC Grant to SJA; San Diego Center for Systems Biology: GM085764 to TI; A systems approach to mapping the DNA damage response: ES014811 to TI; P30CA023100 to SML.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.oraloncology.2015.01.014.

References