Dual Targeting of Integrin $\alpha_v\beta_3$ and Matrix Metalloproteinase-2 for Optical Imaging of Tumors and Chemotherapeutic Delivery

Jessica L. Crisp1, Elamprakash N. Savariar1, Heather L. Glasgow1,4, Lesley G. Ellies2, Michael A. Whitney1, and Roger Y. Tsien1,3,5

Abstract

Activatable cell-penetrating peptides (ACPP) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9)-cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence-guided surgery. To improve specificity and sensitivity for MMP-2, an integrin $\alpha_v\beta_3$-binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin $\alpha_v\beta_3$, which are known to associate via the hemopexin domain of MMP-2. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared with either MMP or integrin $\alpha_v\beta_3$ targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8 ± 1.6, a 10-fold higher tumor fluorescence compared with the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor-bearing mice, compared with no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. Mol Cancer Ther; 13(6); 1514–25. © 2014 AACR.

Introduction

Activatable cell-penetrating peptides (ACPP) provide a universal and modular strategy for tissue targeting and molecular imaging of extracellular protease activity in vivo. ACPPs consist of a polycationic cell-penetrating peptide (CPP) attached to a polyanionic sequence via a protease-cleavable linker. The polyanion prevents adhesion and uptake of the CPP and its cargo until localized protease activity cleaves the substrate sequence, allowing the inhibitory domain to dissociate (1). The released CPP then binds cells in its immediate proximity and is typically endocytosed. For tumor imaging, the main protease targets have been matrix metalloproteinase (MMP-2 and 9), which are pivotal in matrix degradation, inflammation, and tumor cell migration, and whose activity is height-
ratio of the 2 radioisotopes. Imaging probes have also been developed that combine integrin $\alpha_v\beta_3$ and MMP-2 targeting to detect U87MG glioblastoma subcutaneous tumors (16). Optical contrast ratios of 3.5-fold for tumor compared with adjacent normal tissue were obtained using MMP-dependent dequenching of Cy5.5, although this method provides no mechanism for retaining the probe in tumor. This limits the contrast that can be obtained and hinders potential translation from imaging to therapeutic delivery. ACPPs provide a superior alternative to both these examples because the targeting is a function of CPP activation, which has the advantage of enzymatic amplification, and the polyarginine offers an efficient means of cellular penetration and retention. This amplification and retention should increase tumor uptake compared with the purely stoichiometric association of cyclic-RGD and integrin $\alpha_v\beta_3$.

Monomethylauristatin E (MMAE) is a synthetic analogue of dolistatin-10, a potent inhibitor of microtubule polymerization that was originally isolated from the Indian Ocean sea hare Dolabella auricularia (17, 18). Problems with toxicity have limited its effectiveness as an unconjugated drug, but it has found clinical success by linkage to antibodies. The anti-CD30 antibody–auristatin conjugate has been approved for cancer therapy (19), and several others are in various stages of clinical development (20). These achievements suggest that other targeting approaches, including ACPP-based mechanisms, may be useful for expanding the clinical use of MMAE. This report demonstrates that when integrin and MMP targeting strategies are combined, the resulting ACPP has greater uptake into cancer cell lines, enhanced tumor uptake and contrast in vivo, and superior penetration into malignant tissue. Furthermore, peptide conjugation with MMAE leads to regression and cures of established primary tumors.

Materials and Methods

Peptide synthesis

Co-targeted ACPPs were synthesized by following similar synthetic procedures reported in (21). The therapeutic peptides were made as follows: with “mal” denoting maleimidyl, and “suc” denoting succinimidyl, the reaction product of mal with a free cysteine. NH$_2$-e$_9$-o-PLGC(Me)AG-o-c-r$_9$-c(suc-Cy5) (where o = -NH-CH$_2$-CH$_2$-O-CH$_2$-CO-) was reacted with previously synthesized maleimidopropionyl-Val-Cit-PAB-MMAE (22) to generate NH$_2$-e$_9$-o-PLGC(Me)AG-o-c[suc-(CH$_2$)$_2$-Val-Cit-PAB-MMAE]-r$_9$-c(suc-Cy5). This peptide was reacted with mal-p$_{\text{Gly2}}$-NHS through the N terminus, isolated, and reacted with 2 molar equivalents of cyclic(RGDfC) (Peptide International) in dimethyl sulfoxide (DMSO) to

![Diagram](image_url)
get the final compound. The product was purified using high-performance liquid chromatography (HPLC), and the identity was verified using electrospray mass spectrometry. To generate the control peptides, cyclic(RGDfC) was replaced by cyclic(RADfC) and o-PLGC(Me)AG substituted with a PEG6. Detailed chemical synthesis and schemes are provided in Supplementary Data and detailed chemical structures are provided in Supplementary Fig. S1.

Enzyme cleavage assay

Peptides were diluted to 5 μmol/L in a TRIS buffer (20 mmol/L TRIS, 150 mmol/L NaCl, 2 mmol/L CaCl₂, pH 7.5) and placed on ice. The catalytic domain of MMP-2 was added (50 nmol/L) and the reaction mixture was transferred to a 37°C incubator. At various time points for up to 4 hours, 10 μL aliquots were removed from the reaction wells, immediately mixed 1:1 with 2× tricine sample buffer (Life Technologies), and heated to 95°C for 60 seconds. Samples were subjected to electrophoresis on 10% to 20% tricine gradient gels (Life Technologies) for 90 minutes at 110 V. Gels were imaged on a Maestro Imager (Perkin Elmer) using an excitation filter of 620/22 nm and an emission filter of 670/20 nm. Using ImageJ, the integrated intensity was measured for the uncleaved and cleaved peptide bands in each lane of the gel, ensuring that the box used to define the region of interest remained constant.

The following equation was used to calculate the extent of cleavage: percent cleavage = 100 × [(cleaved peptide) / (cleaved peptide + uncleaved peptide)]. A plot was generated that graphed percent of cleaved peptide as a function of time.

Integrin-binding assay

All human cell lines included in this study were purchased from and verified by American Type Culture Collection (ATCC) and used within 6 months of being received or frozen within a few passages from purchase and thawed before experimentation. High protein-binding 96-well plates were coated with vitronectin at a concentration of 10 μg/mL in PBS at 4°C overnight. The plates were rinsed 3 times with Tris-buffered saline (TBS) containing 0.02% Tween, blocked with 2% bovine serum albumin (BSA) in PBS for 1 hour at room temperature (RT), and then rinsed again. MDA-MB-435 cells (ATCC; cultured in Eagle’s minimum essential media (EMEM; ATCC) with 10% FBS at 37°C with 5% CO₂ were rinsed with PBS and detached by incubating with 0.48 mmol/L EDTA (Versene, Gibco) at RT for 15 to 20 minutes. Cells were resuspended in serum-free media containing Calcein Green AM (Life Technologies) and heated to 95°C for 60 seconds. Samples were subjected to electrophoresis on 10% to 20% tricine gradient gels (Life Technologies) for 90 minutes at 110 V. Gels were imaged on a Maestro Imager (Perkin Elmer) using an excitation filter of 620/22 nm and an emission filter of 670/20 nm. Using ImageJ, the integrated intensity was measured for the uncleaved and cleaved peptide bands in each lane of the gel, ensuring that the box used to define the region of interest remained constant.

The following equation was used to calculate the extent of cleavage: percent cleavage = 100 × [(cleaved peptide) / (cleaved peptide + uncleaved peptide)]. A plot was generated that graphed percent of cleaved peptide as a function of time.

Cellular uptake and confocal imaging

U87MG cells (ATCC) were cultured in DMEM (CellGrow) with 10% FBS, GlutaMAX (Gibco), and 1% penicillin/streptomycin at 37°C with 5% CO₂. For imaging, cells were plated on sterile glass bottom 96-wells plates (25,000 cells per well) and allowed to settle overnight. Peptides were diluted to a concentration of 1 μmol/L in serum-free imaging buffer. Culture media were aspirated, and the cells were treated with peptide for 30 minutes at 37°C and then washed 3× before a 100 μL of imaging buffer containing 10% FBS and 20 μg/mL Calcein Blue AM ester (Life Technologies) was added. Imaging was performed on a Zeiss 5-Live line scanning confocal microscope using a 40× water objective with the following settings: 635 nm excitation laser and 650 nm long pass emission filter (Cy5) and a 405 nm excitation laser and 415 to 450 nm emission filter (Calcein Blue).

Tumor model generation and in vivo fluorescence imaging

All animal studies were done in compliance with the principles and procedures outlined by the Institutional Animal Care and Use Committee at the University of California San Diego (La Jolla, CA). MDA-MB-231 cells (ATCC) were cultured in EMEM with 10% FBS at 37°C with 5% CO₂ and female athymic nu/nu mice, 5 to 6 weeks of age, were purchased from Harland Labs or bred at UCSD by the animal care program (ACP). To generate tumors, 1 × 10⁶ to 1 × 10⁷ MDA-MB-231 cells were injected into the mammary fat pads of female mice in a vehicle of 4 mg/mL Matrigel with an injection volume of 40 μL. Tumors were allowed to grow until they reached a diameter of 3 to 5 mm. The MMTV-PyMT model in the FVB/N background was used for spontaneous tumor generation (23). For generation of syngeneic cell line tumors, 1 × 10⁶ Py230 cells originally isolated from a C57Bl/6 spontaneous PyMT tumor (24) were injected into the mammary fat pads of female C57Bl/6 mice in 10 to 20 μL of 4 mg/mL Matrigel. Tumors grew to 5 to 7 mm diameter in 5 to 6 weeks. The Py230 cells were isolated from a spontaneous MMTV-PyMT tumor in 2004 and have been authenticated by flow cytometry and immunohistochemical staining for mammary cell bipotential markers keratin 8 and keratin 14 as well as luminal progenitor cell marker CD61. Tumors arising from Py230 cells have been sectioned and stained to confirm luminal mammary tumor morphology as recently as February 2014.

For optical imaging, mice were anesthetized with an intraperitoneal (IP) injection of 50 μL of a 1:1 mixture of ketamine (100 mg/mL) and midazolam (5 mg/mL; KM).
Cy5-labeled peptides were injected intravenously via the tail vein at a dose of 10 nanomoles. At 6 hours postinjection, mice were again anesthetized with an IP dose of KM and imaged using the Maestro Small Animal Imaging system with an excitation filter of 620/22 nm and a 645 nm long-pass emission filter with the dichroic filter tuned to 670 nm.

To generate Py230 lung metastases, 5 × 10⁵ cells were injected into the tail vein of C57Bl/6 mice and after 4 to 5 weeks, multiple microscopic lung metastases developed. Animals were then injected with 10 nanomoles of cyclic-RGD-PLGC(Me)AG-ACPP and sacrificed 6 hours later. The trachea was exposed and the lungs were inflated with 800 μL PBS, then the trachea was clamped, and the lungs were excised. Whole lungs were imaged on the Maestro using excitation filter of 620/22 nm and an emission filter of 645 nm long-pass with the dichroic filter tuned to 670 nm.

Tumor contrast ratio calculation

Images of mice with the skin removed were analyzed with Image J. A 30-by-30 pixel box was used to measure the integrated fluorescent density for 10 regions of the tumor and 10 regions of tissue immediately adjacent to the tumor. To determine the background fluorescence, a black slate was imaged at the same exposure time and then the average fluorescent density was measured and subtracted from the tissue values. The values for each animal were averaged, and the contrast ratio was calculated by dividing the tumor fluorescence by the surrounding tissue fluorescence.

Standardized uptake value calculation

Tumor, liver, kidney, and muscle were harvested, weighed, and placed in 15-mL plastic vials. Standardized uptake value (SUV) buffer (150 mM NaCl, 10 mM Tris, 2 g/100 mL SDS, 0.25 mg/mL proteinase K, and 0.1 mg/mL DNase, pH 8.0) was added at a ratio of 9 mL buffer per 1 mg tissue. Tissues were homogenized with a point sonicator (Fisher Scientific) using an amplitude range of 5% to 15% for a maximum of 20 seconds. Tissue solutions were placed in a 37°C incubator overnight with constant agitation. About 200 μL was transferred to a well of a black, clear plastic bottom, 96-well plate (Costar) and fluorescence measurements were performed on a plate reader (Tecan) using 630 nm excitation and a 680 nm emission with 12-nm slits. Fluorescent counts were converted to Cy5 concentrations using tissue-specific calibration curves. To calculate the SUV, the peptide concentration in molality was converted to molality and then normalized by the injected dose and animal weight. The equation for SUV is: SUV = (moles of peptide in tissue/ weight of tissue)/(moles of peptide injected/ weight of animal).

Frozen section imaging

Sample tumors from each of the peptide treatment groups were submerged in OCT (Tissue-Tek), snap-frozen in liquid nitrogen, and stored at −80°C. Sections were cut on a cryostat (Leica) at a thickness of 10 μm, then melted directly onto a coverslip, and immediately chilled to −20°C. The tissue remained frozen, whereas images were collected on a 5-Live confocal microscope using a 20× air objective, 635 nm excitation laser, and a 650 nm long-pass emission filter.

Immunohistochemistry

About 10-μm serial sections of frozen tumor tissue were mounted on to Superfrost slides and fixed with 4% paraformaldehyde (PFA) in PBS for 60 seconds at RT. Sections were washed 3 times in PBS and blocked with 10% normal goat serum (Life Technologies) for 30 to 60 minutes at RT and then the excess serum was aspirated. Primary antibodies for MMP-2 (Abcam, ab37150) and αvβ3 (Abbiotec, 251672) were diluted 1:100 in PBS, placed on the tissue, and allowed to incubate overnight at 4°C in the dark within a humidified chamber. Primary antibodies were removed and the sections were washed 3× for 20 minutes each at RT in PBS with slight agitation. Tissue sections were blocked again with goat serum for 20 minutes at room temperature before application of the secondary antibody. Fluorescein isothiocyanate (FITC)-labeled secondary antibody (Santa Cruz, sc-2012) was diluted 1:500 in PBS and incubated for 2 to 3 hours at RT. Sections were washed 3 times for 20 minutes each with PBS and slight agitation and then coverslips were mounted with Prolong Gold (Life Technologies). Imaging was done on the 5-Live microscope using an excitation laser of 488 nm with an emission filter of 500 to 520 nm.

Ex vivo confocal imaging

Mice with MDA-MB-231 mammary tumors were injected with 10 nanomoles cyclic-RGD-PLGC(Me)AG-ACPP and 10 minutes before sacrifice (6 hours after peptide injection), also injected with 250 μg FITC-dextran (10 mg/mL) and 200 μg of Hoechst (10 mg/mL). Tumors were harvested, placed in a glass bottom dish, and imaged using a Zeiss LSM780 point scanning confocal microscope with a 40× water objective.

Therapeutic peptide imaging in vitro

Cal-27 (ATCC), HeLa (ATCC), Panc-1 (ATCC), and PC3 (ATCC) cells were cultured in DMEM with 10% FBS, whereas the MDA-MB-231 (ATCC) and HT1080 (ATCC) cells were grown in EMEM with 10% FBS. Cells were trypsinized and then plated in 96-well glass bottom plates at a density of 20,000 cells per well and allowed to settle for 24 hours. The cyclic-RGD-PLGC(Me)AG-MMAE-ACPP and cyclic-RAD-PEG6-MMAE-ACPP peptides were diluted to 5 μmol/L in serum-free imaging buffer. The cells were treated with peptide for 25 minutes at 37°C and washed 3× before 100 μL of imaging buffer containing 10% FBS and 20 μg/mL Hoechst 33342 (Life Technologies) was added. Live cell imaging was performed as previously described in Cellular uptake and confocal imaging.
Therapeutic studies

To generate MDA-MB-231 tumors, athymic nu/nu mice were injected in the upper thoracic mammary fat pads with 7.5 × 10⁶ cancer cells in Matrigel at a concentration of 4 mg/mL. The volume of tumor cell injections ranged from 30 to 40 μL. For Py230 tumors, 1 × 10⁶ cells were injected into the mammary fat pads of albino C57Bl/6 mice in 10 to 20 μL of 4 mg/mL Matrigel, and tumors grew for approximately 5 weeks before therapy began. Volumes were monitored at regular intervals with calipers and the volume was calculated with the following equation: volume = (1/2) (length)(width)². Tumors were allowed to grow to a volume between 50 and 80 mm³ before therapeutic intervention. MMAE was formulated in a 3% DMSO saline solution and peptides were stored as lyophilized powders and suspended in deionized water just before injection. All therapeutic constructs were administered intravenously. Maleimidoacaproyl-Val-Cit-PAB-MMAE was used to synthesize the cyclic-RGD-PLGC(Me)AG-MMAE ACPP for all therapy experiments with the Py230 model. This resulted in a 3-carbon difference in the linker, as presented in Supplementary Fig. S1C.

Results

Dual-targeted imaging peptides were generated by conjugating cyclic-RGD to the inhibitory domain of the PLGC(Me)AG-ACPP and the far-red fluorescent dye, Cy5, to the CPP domain. To evaluate the individual contributions of integrin binding and MMP activation, a variety of control peptides were also synthesized and tested. Dual-targeted peptides were generated that either controlled for integrin binding by replacing the cyclic-RGD motif with a cyclic-RAD or made impervious to enzymatic cleavage by substituting an uncleavable PEG6 linker for PLGC(Me)AG. All of the peptides used in this study, as well as synthetic intermediates, are presented in Supplementary Table S1 with detailed chemical structures presented in Supplementary Fig. S1.

To determine whether the addition of cyclic-RGD to the ACPP impacted the digestion of the substrate sequence by MMP-2, cleavage rates were compared for a panel of peptides. PLGC(Me)AG-ACPP, cyclic-RGD-PLGC(Me)AG-ACPP, cyclic-RAD-PLGC(Me)AG-ACPP, and cyclic-RGD-PEG6-ACPP were incubated with the catalytic domain of MMP-2 at 37°C and aliquots were taken at multiple time points for up to 4 hours. Cleavage was monitored by gel electrophoresis (Supplementary Fig. S2), and fluorescence intensity measurements of the bands were used to generate a plot of peptide hydrolysis over time (Fig. 2A). The addition of cyclic-RGD proximal to the ACPP substrate resulted in a slight reduction in cleavage rates at early time points. Substituting the cyclic-RGD with cyclic-RAD, a common control to eliminate integrin α_vβ₃ binding, had no impact on kinetics and the uncleavable peptide was resistant to MMP-2 degradation at all time points.

The affinity of cyclic-RGD for α_vβ₃, either alone or in the context of an ACPP, was measured using a cell-based competitive binding assay. MDA-MB-435 cells, labeled with Calcein Green, were incubated with varying concentrations of peptides before being transferred to vitronectin, a protein ligand for α_vβ₃ coated plates. The cells were allowed to bind before the plates were washed. Using fluorescence of Calcein Green as the readout, it was established that conjugation of PLGC(Me)AG-ACPP to cyclic-RGD had little effect on the affinity of cyclic-RGD for integrin α_vβ₃ (Fig. 2B). Furthermore, the MMP-cleavable ACPP without the cyclic-RGD motif had minimal effects on cell binding to vitronectin, even at high peptide concentrations.

To determine whether there was a combined effect from targeting both integrins and MMPs, peptide uptake was observed with U87MG glioblastoma cells in vitro. U87MGs were incubated with 1 μmol/L peptide in serum-free media for 30 minutes at 37°C, washed, and imaged with confocal microscopy. PLGC(Me)AG-ACPP had greater cell uptake than cyclic-RGD, whereas the co-targeted cyclic-RGD-PLGC(Me)AG-ACPP had the highest intracellular fluorescence (Fig. 2C). Substitution of cyclic-RAD for cyclic-RGD resulted in similar uptake to PLGC(Me)AG-ACPP. Cyclic-RGD-PEG6-ACPP also showed much less cellular uptake, and fluorescence was almost undetectable with the double-negative cyclic-RAD-PEG6-ACPP.

Dual targeting was tested in vivo with orthotopic MDA-MB-231 mammary tumors. Representative images presented in Fig. 3A show mice 6 hours after intravenous administration of Cy5-labeled peptide. Tumor contrast was obtained with the skin and tumors targeted simultaneously via integrin α_vβ₃ and MMP-2 were the brightest (Fig. 3B). The tumor to surrounding tissue contrast ratio for cyclic-RGD-PLGC(Me)AG-ACPP was 7.8 ± 1.6, superior to all the other peptides (cyclic-RAD-PLGC(Me)AG-ACPP: 3.9 ± 0.8, P = 3.5 × 10⁻²; cyclic-RGD-PEG6-ACPP: 4.9 ± 0.8, P = 3.1 × 10⁻²; cyclic-RAD-PEG6-ACPP: 3.9 ± 1.6, P = 2.2 × 10⁻³). Congruent with the in vitro testing, the double targeted ACPP also had the highest tumor uptake, with a standardized uptake value (SUV) of 0.81 ± 0.20, significantly higher than cyclic-RAD-PLGC(Me)AG-ACPP (SUV: 0.27 ± 0.11, P = 1.6 × 10⁻⁶), RGD-PEG6-ACPP (SUV: 0.34 ± 0.14, P = 2.6 × 10⁻³), and cyclic-RAD-PEG6-ACPP (SUV: 0.15 ± 0.04, P = 1.1 × 10⁻⁵). Uptake of the probe in the liver and kidneys was similar for all peptides, with liver SUVs averaging 3.5 and kidney SUVs of ~1.5 (Supplementary Fig. S3).

To further validate the contribution of cyclic-RGD in this dual targeting strategy, the cyclic-RGD-PLGC(Me)AG-ACPP was co-injected with a 50-fold excess of unlabelled cyclic-RGDfK. The tumor SUV for these mice was 0.20 ± 0.06, comparable to cyclic-RAD-PLGC(Me)AG-ACPP uptake (Supplementary Fig. S4). Thus, the benefit of cyclic-RGD is saturable and specific. In addition, a similar dual targeting strategy was devised using folate instead of cyclic-RGD. The attachment of folate to the...
MMP-cleavable ACPP had no impact on SKOV3 tumor uptake (Supplementary Fig. S5), an ovarian cancer model that expresses the folate receptor (25). Presumably, folate and the ACPP do not synergize because the folate receptor and MMP-2 do not form a molecular complex or reside in close proximity.

Having validated the cyclic-RGD dual-targeted peptide in the human MDA-MB-231 breast cancer model, further testing of cyclic-RGD-PLGC(Me)AG-ACPP was done in the context of a fully functional immune system. We used the polyomavirus middle T (PyMT) oncogene mouse model, which forms spontaneous mammary adenocarcinomas with metastatic potential (23), as well as the Py230 cell line that can be injected orthotopically to form syngeneic mammary tumors. The Py230 clonal cell line was derived from spontaneous PyMT tumor homogenates and has been characterized as generating luminal tumors when injected in mice (24). In both models, there was a clear identification of the tumor once the fur and skin was removed (Fig. 3C and D). The tumor contrast was 2.8/0.3 for the PyMT model and 6.1/1.5 for Py230. Finally, the ability of cyclic-RGD-PLGC(Me)AG-ACPP to detect pulmonary metastases was examined with an experimental lung metastasis model using Py230 cells. When looking at the whole lungs, metastatic lesions as small as 0.5 mm were detectable with approximately 2-fold contrast (Fig. 3E and F).

MDA-MB-231 tumors were sectioned to detect peptide distribution on a histologic level. Previously, it has been reported that free ACPPs cleavable by MMP-2/-9 home to the stromal regions of the tumor, without much penetration into the tumor tissue (6). With the addition of the cyclic-RGD motif, elevated Cy5 fluorescence was observed both around the perimeter of the tumor and throughout the tumor cross-section (Fig. 4A). With cyclic-RAD-PLGC(Me)AG-ACPP, the boundary of the tumor had the highest peptide signal. Conversion of PLGC(Me)AG to PEG6 substantially reduced fluorescence at the tumor margins, and almost no fluorescent signal was detected in tumor sections from mice that had been injected with cyclic-RAD-PEG6-ACPP. Peptide localization for cyclic-RGD-PLGC(Me)AG-ACPP was also visualized in MDA-MB-231 tumors ex vivo using confocal microscopy. Images of live tumor tissue revealed that the peptide was able to get beyond the vasculature and was primarily contained in endocytic vesicles within the cancer cells (Fig. 4B and C).

Immunohistochemistry was used to confirm the expression of both integrin αvβ3 and MMP-2 in MDA-MB-231 tumors, as well as to compare those expression patterns to

Figure 2. Combining cyclic-RGD and PLGC(Me)AG-ACPP does not impact activity or affinity while improving cellular uptake. A, about 5 µmol/L of Cy5-labeled peptide was incubated at 37°C with 50 nmol/L recombinant MMP-2. Samples at various time points were analyzed with gel electrophoresis, and enzyme cleavage was quantified using the intensities of the peptide bands. B, MDA-MB-435 cells were labeled with Calcein Green and incubated with 0 to 10 µmol/L peptide for 20 minutes at room temperature. Cells were transferred to vitronectin-coated plates and allowed to bind before any unadherent cells were gently removed. The peptide’s ability to inhibit binding of integrins on the MDA-MB-435s to vitronectin was determined by measuring cellular fluorescence. C, U87MG glioblastoma cells were incubated with 1 µmol/L of Cy5-labeled peptide for 25 minutes at 37°C. Cells were washed, labeled with calcein blue, and imaged with confocal microscopy. Top row is peptide fluorescence (red), bottom row shows overlay of Cy5 fluorescence (red) and calcein blue (blue), a marker for cell viability.
that of cyclic-RGD-PLGC(Me)AG-ACPP labeling. Serial tumor sections were probed with fluorescent antibodies (Abs) against integrin $\alpha_v \beta_3$ or MMP-2, imaged for Cy5 signal, or stained with hematoxylin and eosin (H&E). When the fluorescent patterns are compared, it is clear that integrin $\alpha_v \beta_3$ and MMP-2 are in close proximity to one another and that cyclic-RGD-PLGC(Me)AG-ACPP localizes to regions of high target expression (Fig. 4). In the absence of a primary antibody, there was no fluorescence signal (Supplementary Fig. S6).

Next, the ability of the dual-targeted peptide to deliver a chemotherapeutic cargo was investigated. MMAE was attached to the polyarginine portion of the ACPP via a cathepsin B–cleavable linker. This linker is designed for degradation in the lysosome and upon cleavage, an unmodified MMAE is released, which is free to cross the vesicular membrane (26). First, cellular targeting for cyclic-RGD-PLGC(Me)AG-MMAE-ACPP and the control peptide, cyclic-RAD-PEG6-MMAE-ACPP, was tested in a variety of human cancer cell lines including breast, cervical, pancreatic, and prostate. The cells were incubated with peptide (5 μmol/L) for 25 minutes and washed before analysis using confocal microscopy. Cy5 fluorescence (red) established that the dual-targeted peptide had superior penetration in all cell lines compared with controls (Fig. 5).

For the in vivo studies, a therapeutic dose of 0.2 mg/kg MMAE (~6.5 nanomoles of the peptide–drug conjugate) was used. This dose was well under the maximum tolerated dose of 0.5 to 1.0 mg/kg (22, 27), and it correlates with a recent study targeting MMAE as a legumain activatable prodrug, which used free MMAE at 0.1 to 0.5 mg/kg (28). Tumor homing of the dual-targeted therapeutic peptides at the 6.5 nanomole dose was verified with fluorescence imaging (Fig. 6A). Tumor contrast through the skin was lower than previously seen with the imaging dose of 10 nanomoles, but cyclic-RGD-PLGC(Me)AG-MMAE-ACPP and cyclic-RGD-PLGC(Me)AG-ACPP had equivalent tumor targeting.
uptake that was superior to cyclic-RAD-PEG6-MMAE-ACPP, which showed no tumor contrast. The stability of cyclic-RGD-PLGC(Me)AG-MMAE-ACPP was tested in fresh mouse plasma, and the peptide remained intact after a 2-hour incubation enabling in vivo testing, as the peptide is more than 90% cleared from the blood 30 minutes postinjection (Supplementary Fig. S7).

MDA-MB-231 tumors were implanted into the mammary fat pads of female mice, and therapeutic intervention was initiated once the tumors reached the approximate volume of 50 mm³. Seven mice per treatment group were randomly assigned to receive either no treatment, MMAE free drug, cyclic-RAD-PEG6-MMAE-ACPP, or cyclic-RGD-PLGC(Me)AG-MMAE-ACPP at a dose of 0.2 mg/kg MMAE. The drugs were administered every 3 days for a total of 4 doses. Cyclic-RGD-PLGC(Me)AG-ACPP targeting of MMAE significantly \((P = 3.1 \times 10^{-5}) \) reduced the average tumor volume over treatment with the drug alone (Supplementary Fig. S8A). When the targeting mechanisms were controlled for using a cyclic-RAD-PEG6-ACPP, it was substantially less effective than equimolar free MMAE. Once tumors grew to a diameter of 10 mm, the animals were sacrificed, so experimental analysis continued by monitoring survival of the remaining animals. The data are presented as a Kaplan–Meier survival plot that begins after the last therapy injection (Fig. 6B). Conjugating MMAE with cyclic-RGD-PLGC(Me)AG-ACPP prolonged animal survival, with 28% of the mice in this treatment group attaining complete tumor regression. All animals treated with either MMAE or cyclic-RAD-PEG6-MMAE-ACPP had to be sacrificed by 19 days posttherapy.

To determine the contribution of each targeting moiety to the therapeutic effect, cyclic-RAD-PLGC(Me)AG-MMAE-ACPP and cyclic-RGD-PEG6-MMAE-ACPP were synthesized and tested to eliminate one mechanism at a time. This extended panel of peptides was administered to mice bearing MDA-MB-231 tumors at a dose of 0.22 mg/kg MMAE (~7 nmole dose) as indicated by the black arrows in Fig. 6C. Again, the dual-targeted peptide significantly reduced tumor volume when compared with the drug alone \((P = 2.0 \times 10^{-5}) \) and achieved tumor regression in 1 of 4 mice. When each targeting strategy was tested individually, the result was similar to that of the dual negative probe; peptide conjugation reduced the
The nuclei were labeled with Hoechst nuclear stain, and across cell lines, the cyclic-RGD-PLGC(Me)AG-MMAE-ACPP signal was washed and then imaged live using a 5-Live confocal microscope. Cy5 fluorescence (red) for the 2 peptides is scaled equally within each cell line, and across cell lines, the cyclic-RGD-PLGC(Me)AG-MMAE-ACPP signal is scaled to max. The nuclei were labeled with Hoechst nuclear stain, which is represented in blue.

Figure 5. Cyclic-RGD-PLGC(Me)AG-MMAE-ACPP is preferentially taken up into a variety of human cancer cell lines in vitro. Cyclic-RGD-PLGC(Me)AG-MMAE-ACPP (left column) and cyclic-RAD-PEG6-MMAE-ACPP (right column) were incubated on several human cancer cell lines at 5 µmol/L in serum-free media at 37 °C for 25 minutes. The cells were washed and then imaged live using a 5-Live confocal microscope. Cy5 fluorescence (red) for the 2 peptides is scaled equally within each cell line, and across cell lines, the cyclic-RGD-PLGC(Me)AG-MMAE-ACPP signal is scaled to max. The nuclei were labeled with Hoechst nuclear stain, which is represented in blue.

Discussion

The combination of integrin and MMP targeting was successful at amplifying tumor targeting beyond levels attained by either mechanism alone. The attachment of cyclic-RGD near the substrate region of the ACPP had a minimal effect on MMP-2 cleavage rates and did not impact the affinity of cyclic-RGD for integrin $\alpha_v\beta_3$. While it is clear from cell culture experiments that dual targeting has a supra additive effect on peptide uptake, it would be interesting to monitor peptide cleavage kinetics in a similar biologic context. One report designed a MMP-RGD peptide that released fluorescein (FAM) into the culture media upon cleavage by MMP-2 (29). This article shows no difference in peptide cleavage when incubating the probe on PMA-treated HUVEC cells with or without a 10-fold excess of cyclic-RGD. In this experiment, no cleavage of their probe was detected in the first 8 hours of incubation, and it was not until 24 hours postinjection that an increase in the concentration of released FAM was measured. At this time point, active MMP-2 was found in the culture media, suggesting that cleavage could be a result of unbound MMP-2, so the lack of integrin dependence is not surprising. Also, the time scale for these experiments is drastically different from that observed with cyclic-RGD-PLGC(Me)AG-ACPP in tissue culture, which after washing off any soluble enzyme, had a substantial increase in peptide cleavage and cellular uptake within 20 minutes.

In vivo results also support the hypothesis that dual targeting with cyclic-RGD and MMP-2 cleavable ACPPs improves tumor targeting. Systematic controls for integrin binding and MMP-2 susceptibility clearly demonstrated that combining both targeting moieties resulted in superior peptide uptake and improved contrast to surrounding tissues. Imaging peptide fluorescence on a histologic scale supported the gross fluorescent data. Cross-sections of tumors from mice that had been injected with cyclic-RGD-PLGC(Me)AG-ACPP had substantially more peptide fluorescence with labeling distributed throughout the tumor. With just MMP targeting, the fluorescence was localized to the tumor edges, and once the enzymatic targeting was disabled, tumor signal dropped dramatically. Further support for the functional relationship between integrin $\alpha_v\beta_3$ and MMP-2 comes from the data obtained with the folate-PLGC(Me)AG-ACPP peptide. There is no known association between MMP-2 and the folate receptor and subsequently, the attachment of folate to the ACPP peptide did not result in tumor fluorescence or uptake when tested in an ovarian cancer model known to express the folate receptor.

The results in the MDA-MB-231 tumor model are particularly exciting because of this cell line’s triple-negative
status; these cells do not rely on the overexpression of estrogen, progesterone, or HER2 receptors (30). Patients with triple-negative tumors have bad prognoses (31) and they do not benefit from current molecularly targeted therapies such as trastuzumab and tamoxifen. Development of targeting agents like ACPPs, which use the ubiquitous expression of gelatinases in tumor progression and malignancy, could provide an exciting new avenue for
therapeutic development for multiple types of cancer. This is supported by the fact that dual-targeted ACPPs had superior tumor cell uptake across multiple human cancer cell types.

A recent report also uses dual targeting to deliver MMAE by combining legumain protease activation and integrin targeting. This article focuses on how the prodrug formulation of MMAE increases its therapeutic window, showing a reduction in primary tumor volume and metastatic burden using 3 times the maximum tolerated dose of MMAE alone. The therapy experiments do not have controls to validate the proposed mechanism and primarily compare animal data for prodrug-MMAE with mice that are not receiving treatment. Our dual-targeted ACPPs are demonstrating similar therapeutic results as those reported in Liu and colleagues but at a fraction (7%) of the dose. This is promising evidence that dual-targeted ACPPs can be a powerful tool to for the intracellular delivery of diagnostic and therapeutic agents to the regions of enzymatic activity associated with tumor progression.

Disclosure of Potential Conflicts of Interest

R.Y. Tsien has ownership interest (including patents) in and is a consultant/advisory board member for Avelas Biosciences. M.A. Whitney is a consultant/advisory board member for Avelas Biosciences. No potential conflicts of interest were disclosed by the other authors.

References

Authors’ Contributions

Conception and design: J.L. Crisp, E.N. Savariar, M.A. Whitney, R.Y. Tsien
Development of methodology: J.L. Crisp, E.N. Savariar, M.A. Whitney, R.Y. Tsien
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc): J.L. Crisp, E.N. Savariar, H.L. Glasgow, L.G. Ellis
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.L. Crisp, E.N. Savariar, H.L. Glasgow, M.A. Whitney
Writing, review, and/or revision of the manuscript: J.L. Crisp, E.N. Savariar, M.A. Whitney, R.Y. Tsien
Study supervision: M.A. Whitney, R.Y. Tsien

Acknowledgments

The authors thank Dr. Peter Senter for invaluable discussion, Paul Steinbach for assistance with confocal microscopy, Qing Xiong for support with solid phase peptide synthesis, and Perla Arcara for her support with animal husbandry and tumor model generation.

Grant Support

This work was supported by the Howard Hughes Medical Institute (to R.Y. Tsien), the NIH/NCI grant S01CA158448 (to E.N. Savariar, L.G. Ellis, M.A. Whitney, and R.Y. Tsien), and the DoD Breast Cancer Collaborative Innovators Award W81XWH-09-1-0699 (to J.L. Crisp, H.L. Glasgow, and R.Y. Tsien).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 17, 2013; revised March 24, 2014; accepted April 9, 2014; published OnlineFirst April 15, 2014.
Dual Targeting of Integrin $\alpha_v\beta_3$ and Matrix Metalloproteinase-2 for Optical Imaging of Tumors and Chemotherapeutic Delivery

Mol Cancer Ther 2014;13:1514-1525. Published OnlineFirst April 15, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-13-1067

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/04/17/1535-7163.MCT-13-1067.DC1.html

Cited Articles
This article cites by 32 articles, 8 of which you can access for free at:
http://mct.aacrjournals.org/content/13/6/1514.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.