
er in the same lineage because both are mecha-
nisms to avoid inbreeding. The obvious corol-
lary, that gender dimorphism is more likely to
evolve in groups that are self-compatible, has
often been discussed (9, 10, 20). Yet, if scenar-
ios like that proposed here are common, gender
dimorphism may frequently evolve in lineages
with self-incompatibility without negating in-
breeding avoidance as a selective mechanism.
The pathway presented here reinforces the im-
portance of inbreeding avoidance in the evolu-
tion of gender dimorphism and could explain
why a negative association between gender di-
morphism and self-incompatibility has been dif-
ficult to find (10). Although gender dimorphism
has been widely studied, many aspects are not
fully understood, and new scenarios, such as the
one presented here, surely await discovery.
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Alteration of Stimulus-Specific
Guard Cell Calcium Oscillations

and Stomatal Closing in
Arabidopsis det3 Mutant
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Cytosolic calcium oscillations control signaling in animal cells, whereas in plants
their importance remains largely unknown. In wild-type Arabidopsis guard cells
abscisic acid, oxidative stress, cold, and external calcium elicited cytosolic
calcium oscillations of differing amplitudes and frequencies and induced sto-
matal closure. In guard cells of the V-ATPase mutant det3, external calcium and
oxidative stress elicited prolonged calcium increases, which did not oscillate,
and stomatal closure was abolished. Conversely, cold and abscisic acid elicited
calcium oscillations in det3, and stomatal closure occurred normally. Moreover,
in det3 guard cells, experimentally imposing external calcium-induced oscilla-
tions rescued stomatal closure. These data provide genetic evidence that stim-
ulus-specific calcium oscillations are necessary for stomatal closure.

Cytosolic calcium ([Ca21]cyt) oscillations are
an integral component of cell signaling, and
the frequency, amplitude, and spatial local-
ization of oscillations control the efficiency

and specificity of cellular responses in ani-
mals (1–3). In plant cells [Ca21]cyt oscilla-
tions are induced by multiple stimuli (4–9);
however, it remains unknown whether oscil-
lations are required to elicit physiological
responses in plants. Here we show that the
Arabidopsis det3 mutant abolishes guard cell
[Ca21]cyt oscillations and stomatal closure in
response to oxidative stress and extracellular
calcium ([Ca21]ext), but not to abscisic acid
(ABA) and cold. Restoring [Ca21]ext-induced
[Ca21]cyt oscillations in det3 guard cells res-
cued stomatal closure, suggesting that
[Ca21]cyt oscillations are essential for stoma-
tal closure.

Stomatal closure follows increases in
guard cell [Ca21]cyt (10), and endomembrane
calcium transport contributes to the [Ca21]cyt

signal (7, 11–13). Genetic impairment of en-
domembrane calcium transport could there-
fore provide a direct approach for dissecting
[Ca21]cyt signals. The de-etiolated 3 (det3)
Arabidopsis mutant has reduced endomem-
brane energization owing to a 60% reduction
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in expression of the C-subunit of the V-type
H1–adenosine triphosphatase (V-ATPase)
(14). det3 was identified by its failure to
repress light-specific development in the
dark; it has a dwarf phenotype, but normal
stomatal development (14). Figure 1 shows
DET3 promoter–driven DET3–green fluo-
rescent protein (GFP) fluorescence in Arabi-
dopsis guard cells (Fig. 1A), protoplasts (Fig.
1C), and isolated vacuoles (Fig. 1D) and
indicates that DET3 is expressed in guard
cells and is localized on multiple membranes
including both endoplasmic reticulum (ER)
and vacuolar membranes. We hypothesized
that endomembrane de-energization in det3
guard cells could affect [Ca21]cyt signaling
because Ca21 sequestration into intracellular

stores is H1 gradient–dependent in many
organisms (15–19).

Wild-type (WT) Arabidopsis stably ex-
pressing yellow cameleon 2.1 (YC2.1) under
the control of the constitutive 35S promoter
was used to measure [Ca21]cyt signals in
stomatal guard cells (20–22). Oscillations in
[Ca21]cyt were rapidly induced by 1 or 10
mM extracellular calcium in all 84 WT guard
cells tested (Fig. 2, A and B). [Ca21]cyt os-
cillations were smaller and of higher frequen-
cy for 1 mM [Ca21]ext (average [Ca21]cyt at
peak ' 160 nM; period 5 161 6 20 s) than
for 10 mM [Ca21]ext ([Ca21]cyt ' 1020 nM;
period 5 396 6 23 s) [see also (4, 8)].
Oscillations ceased after 45 to 60 min (Fig.
2B) and preceded maximal stomatal closure,

which was measured after 3 hours. In det3
guard cells, increasing [Ca21]ext from 0 to 1
or 10 mM caused immediate [Ca21]cyt in-
creases which, unlike in the WT, subsequent-
ly failed to oscillate but consisted of small,
rapid spikes superimposed on prolonged
[Ca21]cyt increases (n 5 55 of 56 cells) (Fig.
2, C and D) ([Ca21]cyt ' 350 nM for 1 mM
[Ca21]ext and ' 1250 nM for 10 mM
[Ca21]ext). Additionally, the total integrated
[Ca21]cyt increase over an '30-min period
was higher in det3 [5910 6 785 nMzmin (n 5
6)] than in WT [3010 6 263 nMzmin (n 5 6)]
at 10 mM [Ca21]ext.

The absence of [Ca21]ext-induced
[Ca21]cyt oscillations in det3 guard cells was
consistent with a marked effect on [Ca21]ext-
induced stomatal closure. Addition of
[Ca21]ext to preopened WT stomata caused
closure, whereas in det3 stomatal closure was
abolished at all [Ca21]ext concentrations test-
ed (Fig. 2E).

To further investigate the role of [Ca21]cyt

oscillations and det3 in guard cell signaling,
we measured [Ca21]cyt and stomatal move-
ments in response to other stimuli. In WT
guard cells ABA caused repetitive [Ca21]cyt

transients (Fig. 3A), or more prolonged os-
cillations (Fig. 3B), with a magnitude of
;500 nM and a period of 468 6 41 s (n 5
40) for transients and 333 6 35 s (n 5 6) for
oscillations (Fig. 3, A and B). In det3, ABA
caused [Ca21]cyt transients or oscillations
with near-identical magnitudes (Fig. 3, C and
D) and periods (476 6 32 s, n 5 26 for
transients and 328 6 36 s, n 5 4 for oscilla-
tions; P . 0.15 for WT versus det3 periods
for both transients and oscillations). ABA

Fig. 1. Localization in Arabidopsis guard
cells of a COOH-terminal DET3-GFP fu-
sion expressed under the control of the
DET3 promoter in plasmid pPZP221
(14). (A) GFP fluorescence is excluded
from the vacuoles (vc), chloroplasts
(ch), and nucleus (nu) and is concen-
trated in the ER. Bar, 5 mm. (B)
Autofluorescence in nontransformed
cell. Bar, 5 mm. (C) In guard cell proto-
plasts, GFP fluorescence is excluded
from vacuoles (vc) and the nucleus (nu)
and is concentrated in the ER. Bar, 4
mm. (D) In ruptured guard cell proto-
plasts fluorescence was associated with
released vacuolar membranes (vc) and
the collapsed nucleus (nu), but not the
plasma membrane (pm). Bar, 4 mm.

Fig. 2. [Ca21]ext-induced guard cell
[Ca21]cyt oscillations and stomatal
responses in WT and det3. (A)
[Ca21]cyt oscillations in a WT guard
cell induced by 1 mM [Ca21]ext (n 5
32 from 16 stomates). Oscillations
had a mean peak 535/480 nm emis-
sion ratio of 2.47 6 0.4. (B) [Ca21]cyt
oscillations in a WT guard cell in-

duced by 10 mM [Ca21]ext (n 5 52 from 26 stomates). Oscillations had a mean peak 535/480 nm ratio of 3.21 6 0.16. The trace is from the right-hand
cell of the stomate in the lower panel. Images indicate the 535/480 nm ratio at points *1 to *4. (C) Increase of det3 guard cell [Ca21]cyt induced
by 1 mM [Ca21]ext (n 5 21 cells from 11 stomates). Increases had a mean peak 535/480 nm ratio of 2.83 6 0.31. (D) Increase of det3 guard
cell [Ca21]cyt induced by 10 mM extracellular calcium (n 5 34 from 17 stomates). Increases had a mean peak 535/480 nm ratio of 3.26 6 0.39. The trace
is from the right-hand cell of the stomate in the lower panel. Images indicate the 535/480 nm ratio at points #1 to #4. (E) Increasing [Ca21]ext caused
stomatal closure in WT (E) but not det3 (F). Data are the mean 6 SEM of 120 stomata from four replicates for each [Ca21]ext.
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also induced stomatal closure to the same
extent in WT and det3 (Fig. 3E).

Hydrogen peroxide (H2O2) also induced
[Ca21]cyt increases in WT guard cells (23,
24 ), consisting of one or two separate tran-
sients (Fig. 4A) with peak magnitudes of
;700 nM (n 5 24). In det3 guard cells
H2O2 caused larger ('1450 nM), more pro-
longed [Ca21]cyt increases (Fig. 4B, n 5 22
cells), and H2O2-induced stomatal closure

was abolished (Fig. 4C). H2O2-induced
[Ca21]cyt signaling in guard cells requires
activation of a plasma membrane calcium
influx current (ICa) that shows enhanced
activity at negative membrane potentials
(24 ). Electrophysiological measurement
(22) of ICa in guard cell protoplasts showed
identical ICa activation by H2O2 in WT and
det3 (Fig. 4, D and E).

Cold increases plant cell [Ca21]cyt (25). In

WT guard cells cold elicited small, repetitive
[Ca21]cyt transients (amplitude ' 125 nM
[Ca21]cyt; frequency, 154 6 11 s; n 5 20
cells) (Fig. 4F). Cold-induced transients of
similar amplitude and frequency (ampli-
tude ' 125 nM [Ca21]cyt; frequency, 162 6
21 s; n 5 18 cells) were measured in det3
guard cells (P , 0.01) (Fig. 4G). Cold elic-
ited stomatal closure to the same extent in
det3 and WT (P , 0.05) (Fig. 4H).

Calcium contents ( predominantly vacu-
olar and ER) measured by elemental x-ray
microanalysis (26 ) in intact guard cells of
open stomates were indistinguishable be-
tween WT and det3 (calcium as weight
percent of total K1, Na1, and Ca21 5
34.3 6 1.2% for WT and 34.7 6 0.7% for
det3, n 5 90 each). These data suggest that
the residual 40% V-ATPase activity is suf-
ficient to allow long-term intracellular cal-
cium accumulation in det3. Therefore, dis-
ruption of [Ca21]ext- and oxidative stress–
induced [Ca21]cyt oscillations in det3 guard
cells (Figs. 2, C and D, and 4B) does not
appear to be due to depletion of intracellu-
lar calcium stores.

The correlation in det3 between stimuli
for which guard cell [Ca21]cyt oscillations are
disrupted and stomatal closure is abolished
strongly suggests that [Ca21]cyt oscillations
are necessary for stomatal closure. To criti-
cally test this hypothesis, we experimentally
imposed [Ca21]cyt oscillations in guard cells
using hyperpolarization-mediated calcium in-
flux (9, 11). Exchanging the bathing solution
every 300 s between high-KCl (depolarizing)
and low-KCl (hyperpolarizing) buffers (22),
and adding [Ca21]ext concomitantly with the
hyperpolarizing buffer, imposed repetitive
[Ca21]cyt increases in WT guard cells (Fig.
5A, n 5 20 cells) and resulted in stomatal
closure (Fig. 5B, left panel, “Post Osc”).
Removing external calcium with 10 mM
EGTA prevented oscillations (n 5 8) and
inhibited stomatal closure when external K1

Fig. 3. ABA-induced
guard cell [Ca21]cyt os-
cillations and stomatal
responses in WT and
det3. (A) Repetitive,
transient [Ca21]cyt in-
creases in a WT guard
cell induced by 10 mM
ABA (n 5 40 from 28
stomates). Transients
had a mean peak 535/
480 nm ratio of 3.07 6
0.29. (B) Oscillations of
WT guard cell [Ca21]cyt
induced by 10 mM ABA
(n 5 6 from three stomates). Oscillations had a mean peak 535/480 nm
ratio of 2.91 6 0.31. (C) Repetitive, transient increases in det3 guard cell
[Ca21]cyt induced by 10 mM ABA (n 5 26 from 15 stomates). Transients had
a mean peak 535/480 nm ratio of 3.09 6 0.22. (D) Oscillations of det3 guard
cell [Ca21]cyt induced by 10 mM ABA (n 5 4 from two stomates). Oscilla-

tions had a mean peak 535/480 nm ratio of 2.98 6 0.31. Transients occurred
in both guard cells of all responsive stomata (ABA-induced [Ca21]cyt increas-
es were observed in 81% of cells, n 5 76 from 96 stomates). (E) ABA induced
stomatal closure in WT (E) and det3 (F). Data are the mean 6 SEM of 120
stomata from four replicates.

Fig. 4. Guard cell [Ca21]cyt oscillations and stomatal responses to H2O2 and cold in WT and det3.
(A) Repetitive, transient increases in WT guard cell [Ca21]cyt induced by 100 mM H2O2 (n 5 24
from 13 stomates). Transients had a mean peak 535/480 nm ratio of 3.11 6 0.31 and a period,
when two increases occurred, of 366 6 31 s. (B) Increase of det3 guard cell [Ca21]cyt induced by
100 mM H2O2 (n 5 22 from 13 stomates). Increases had a mean peak 535/480 nm ratio of 3.31 6
0.46. (C) One hundred micromolar H2O2 induced stomatal closure in WT (left bars) but not det3
(right bars). Data are the mean 6 SEM of 180 stomata from three replicates. Hyperpolarization
activated calcium-permeable currents in (D) WT (n 5 9) and (E) det3 (n 5 6) guard cell protoplasts
induced by H2O2. (F) Oscillations of WT guard cell [Ca21]cyt induced by cold (n 5 20 from 10
stomates). Oscillations had a mean peak 535/480 nm ratio of 2.66 6 0.31. (G) Oscillations of det3
guard cell [Ca21]cyt induced by cold (n 5 18 from nine stomates). Oscillations had a mean peak
535/480 nm ratio of 2.61 6 0.29. (H) Cold induced stomatal closure in WT (left) and det3 (right).
Data are the mean 6 SEM of 180 stomata from three replicates.
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was repetitively exchanged (27). One 300-s
hyperpolarization resulted in a single calcium
transient, indicating that spontaneous oscilla-
tions were not initiated (Fig. 5C, n 5 12
cells). Continuous transfer into the hyperpo-
larizing buffer (0.1 mM K1) (Fig. 5D) in-
duced oscillations with a higher frequency
than oscillations induced by 10 mM [Ca21]ext

at 5 mM K1 [period 5 178 6 31 s, n 5 32
compared with 396 6 23 (Fig. 2B)] and
resulted in stomatal closure (Fig. 5B, left
panel, “Hyp”). However, imposing hyperpo-
larizations by decreasing external K1 step-
wise from 100 mM to 10, 1, and 0.1 mM,
concomitant with the addition of 10 mM
[Ca21]ext, produced prolonged [Ca21]cyt in-
creases in WT guard cells (Fig. 5E) similar to
[Ca21]ext-induced [Ca21]cyt increases in det3
(compare Figs. 2, C and D, and 5E). Notably,
prolonged [Ca21]cyt increases in WT also
failed to elicit stomatal closure (Fig. 5B, left
panel, “Step”).

In det3 guard cells, repetitive hyperpolar-
izations and the concomitant addition of 10
mM [Ca21]ext also induced [Ca21]cyt oscilla-
tions (Fig. 5F, n 5 18 of 22 cells), which
contrasted with the prolonged [Ca21]cyt in-
creases induced by [Ca21]ext at constant ex-
ternal K1 (Fig. 2, C and D). Remarkably,
imposing [Ca21]cyt oscillations in det3 guard
cells elicited [Ca21]ext-induced stomatal clo-
sure (Fig. 5B, right panel). Therefore, by
restoring oscillations in det3 guard cells, the
impairment of [Ca21]ext-induced stomatal
closure was rescued.

The [Ca21]cyt oscillations elicited by
ABA, cold, [Ca21]ext, and oxidative stress
had different amplitudes and frequencies
(Figs. 2, A and B; 3, A and B; and 4, A and
F), and all induced stomatal closure. Oscilla-
tions in [Ca21]cyt result from the interaction
of three processes: extracellular calcium in-
flux, intracellular calcium release, and se-
questration into intracellular stores or across
the plasma membrane (28, 29). In guard cells
the stimuli [Ca21]ext (4) and oxidative stress
(24) activate calcium influx from the extra-
cellular space. In det3 guard cells these stim-
uli caused an initial [Ca21]cyt increase (Figs.
2, C and D, and 4B), suggesting that this
initial calcium influx is unaffected, as also
indicated by identical ICa activation in WT
and det3 (Fig. 4, D and E). However, in det3
these stimuli caused prolonged [Ca21]cyt in-
creases, suggesting that disruption of
[Ca21]cyt oscillations is due to impaired endo-
membrane Ca21 uptake. Disruption of endo-
membrane Ca21 uptake in det3 could occur
by a number of possible mechanisms. Ca21/
H1 antiporter activity, which is involved in
Ca21 homeostasis in plant cells (16), may be
reduced. Alternatively, a proposed direct fa-
cilitation of Ca21-ATPase activity by V-
ATPases (17, 19) might be disrupted in det3.
Additionally, endomembrane lumen or cyto-
solic pH changes in det3 may have effects on
Ca21 transporters.

Disruption of [Ca21]cyt oscillations in re-
sponse to [Ca21]ext and oxidative stress but not
ABA and cold suggests that different mecha-

nisms generate oscillations for these stimuli.
These mechanisms may involve different Ca21

transporters located at separate intracellular cal-
cium stores, as is found in animal cells (18, 19),
although certain components can be shared
among stimuli (9, 24, 25).

In det3 guard cells, the perfect correlation
between those stimuli for which [Ca21]cyt

oscillations were disrupted and stomatal clo-
sure was abolished strongly suggests that cal-
cium oscillations are required for stomatal
closure. Imposing oscillations rescued
[Ca21]ext-induced stomatal closure in det3,
supporting previous hypotheses that calcium
oscillations are required for physiological re-
sponses in guard cells (30). Prolonged
[Ca21]cyt increases in det3 (Fig. 2, C and D)
or WT (Fig. 5, B and E) failed to elicit
stomatal closure, suggesting, as in animal
cells (1–3), that disruption of oscillations has
a negative effect on some physiological re-
sponses. Therefore, regulation of the mecha-
nism(s) in guard cells necessary to mediate
stomatal closure is probably encoded by a
pattern of periodic [Ca21]cyt increases. Over-
all, these findings strongly suggest that in
Arabidopsis guard cells, [Ca21]cyt oscilla-
tions are essential to elicit stomatal closure.
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High Direct Estimate of the
Mutation Rate in the

Mitochondrial Genome of
Caenorhabditis elegans
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Mutations in the mitochondrial genome have been implicated in numerous
human genetic disorders and offer important data for phylogenetic, forensic,
and population genetic studies. Using a long-term series of Caenorhabditis
elegans mutation accumulation lines, we performed a wide-scale screen for
mutations in the mitochondrial genome that revealed a mutation rate that is
two orders of magnitude higher than previous indirect estimates, a highly biased
mutational spectrum, multiple mutations affecting coding function, as well as
mutational hotspots at homopolymeric nucleotide stretches.

Understanding the onset of mitochondrial dis-
ease and effective evolutionary analysis require
accurate estimates of the rate and pattern of
mitochondrial mutation, both of which have
been the focus of recent controversy. Phyloge-
netic estimates of the substitution rate in the
control region and protein-coding sequences of
the human mitochondrial genome range from
0.02 to 0.26 per site per 106 years (My) (1, 2).
By contrast, pedigree analyses of the human
control region and protein-coding sequences
suggest that the substitution rate is much higher:
;2.5 per site per My (3, 4). This discrepancy
may be a consequence of mutational hotspots in
the control region and/or the mitochondrial dis-
ease state of the individuals included in the
pedigree analyses (5, 6). Because the rate and
pattern of mitochondrial substitution observed
over phylogenetic time are a function of both the
baseline mutational spectrum and its subsequent
modification by natural selection, they likely
provide a highly biased view of the rate and
pattern of mutation. Unfortunately, almost all of
our current estimates are based on indirect ar-
guments and observations that may be biased by
the consequences of selection (7, 8).

A direct estimate of the mitochondrial mu-
tation rate and pattern was accomplished by
sequencing 10,428 base pairs (bp) of the mito-
chondrial genomes of 74 Caenorhabditis el-
egans mutation accumulation (MA) lines main-
tained for an average of 214 generations by
single-progeny descent (9–12). Each MA line

was propagated in a benign environment across
generations by a single, random worm. This
resulted in an effective population size of each
MA line equal to one; hence, the efficiency of
natural selection was reduced to a minimum,
ensuring that all mutations, except those with
extreme effects, accumulated over time in a
neutral manner. These lines are known to have
undergone a substantial decline in productivity,
survival to maturity, generation time, and fit-
ness as a consequence of deleterious-mutation
accumulation (12).

Among the 74 MA lines, we analyzed
771,672 bp and observed 26 mutations for a
total mutation rate equal to 1.6 3 1027 per site
per generation (63.1 3 1028), or based on an
average generation time of 4 days, 14.3 per site
per My (62.8). Sixteen of these mutations were
base substitutions (Table 1), yielding a direct
estimate of the mitochondrial mutation rate for
base substitutions equal to 9.7 3 1028 per site
per generation (62.4 3 1028), or 8.9 per site
per My (62.2). This observed rate is two orders
of magnitude higher than the phylogenetic es-
timates discussed above and exceeds rates de-
rived from pedigree analyses (1–4). The 16
base substitutions occurred across unique sites
in 15 different MA lines, suggesting that the
observed rate of base substitution is a product
neither of hotspots nor of lines predisposed to
mitochondrial mutation. Furthermore, the ob-
served numbers of lines with 0, 1, and 2 muta-
tions are nearly identical to those expected on
the basis of a Poisson distribution (13).

Animal mitochondrial DNA (mtDNA) evo-
lution is characterized by a strong bias toward
transition (G7A or T7C) substitutions, but it
has been unclear whether this phenomenon is a
consequence of selection or of the baseline
mutational spectrum (14, 15). Comparison of
two natural isolates of C. elegans, N2 (England)
and RC301 (Germany), revealed 27 transitions
and 2 transversions in mtDNA (16). Similarly,
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